

AUTOSTRADA (A14): BOLOGNA - BARI -TARANTO TRATTO: BOLOGNA BORGO PANIGALE - BOLOGNA SAN LAZZARO

POTENZIAMENTO IN SEDE DEL SISTEMA
AUTOSTRADALE E TANGENZIALE DI BOLOGNA
INTERVENTI DI COMPLETAMENTO DELLA RETE VIARIA DI ADDUZIONE
LUNGO SAVENA LOTTO 3

PROGETTO DEFINITIVO

DOCUMENTAZIONE GENERALE

GEOLOGIA PROVE DI LABORATORIO

PROVE DI LABORATORIO (SONDAGGI) - VOL. 2/3

IL GEOLOGO

Dott. Enrico Maranini Ord. Geol. Emilia-Romagna N. 1056 IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Fabio Serrau Ord. Ingg. Bologna n. 6007/A IL DIRETTORE TECNICO

Ing. Piero Bongio Ord. Ingg. Sondrio N. A538

T.A. - Geologia e Geotecnica

CODICE IDENTIFICATIVO RIFERIMENTO PROGETTO RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO										ORDINATORE	
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	-
111454	0000	PD	DG	GEO	LA000	00000	R	GEO	0021	-0	SCALA -

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Fabio Visintin

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e della mobilità sostenibili dipartimento per la programmazione, le infrastrutture di trasporto a rete e i sistemi informatti 40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 10/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0393

CSP

DATA ACCETTAZIONE:

05/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO: Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CI-1

PROFONDITA' (m): 1.50-2.10

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E" VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

	CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA	
	DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0393-01	
	GRT02	Granulometria per via umida (max 10 vagli) su terre con elementi < 5 mm	1	ASTM D 422	CSP 16/0393-02	
	LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0393-03	
	TDR01a	Prova di taglio diretto, Consolidata Drenata (C.D.), eseguita su tre provini	1	ASTM D 3080	CSP 16/0393-04	
	1511010					
						_
1						

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

del 12/2014)

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP_16/0393-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0393_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

30/09/16

DATA DI EMISSIONE:

10/11/16

2.10

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-1 Profondità: 1.50

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI

. 21/10/2016

DATA TERMINE PROVA:

21/10/2016

TIMBRO BLU SULL

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

CPR_001 (Rev. 1 del 04/05)

File: CPR 001 DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0393-01

DATA EMISSIONE

10/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-1

PROFONDITA':

1.50

2.10

Data descrizione

21/10/16

Forma del campione

: cilindrica

Qualità del campione (AGI):

Q.5.

Dimensioni del campione

: L = 35 cm; ϕ = 8,4 cm

	Profc	ndità	Descrizione
	da m	a m	
TTA DELLA SINERGEA srl.	1.75	1.85	A L di colore bruno grigiastro scuro (10YR 4/2) Presenza di calcinelli, veli calcarei, veli e puntinature nerastre e brunastre, apparati radicali, mica. Media reazione a contatto con HCI 5%.
NZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.	1.85	2.10	A con L di colore bruno grigiastro chiaro (10YR 6/2) Presenza di calcinelli, concrezioni calcaree, veli e puntinature brunastre, mica. Forte reazione a contatto con HCI 5%.

							_		2-1-1-1-10-1-1		-		Torba/Torboso
LEGENDA			Argilloso	L		Limo/Limoso	S		Sabbia/Sabbioso		Т	=	
	_		Ghiaioso			F = Fine			= Medio	С	=	G	rossolano
	Per					II Soil Color Cha							
			dicolare all'				=	para	illelo all'asse del				T- F-
SCHE	MA DE	L CAMPI	ONE	P.P	.	T.V.			PROVE	ESI	=Gl	JI	IE
Prof. Nom	inale	Profond	ità reale	(MPa	a)	(MPa)							
(m)			(m)										
1.50													
			1.75										
			1.85				CI	٧W,	MVT, GRA, LIN	И, Т	DR		
			200 0000										
				8.0	\perp								
				0.7	1								
				0.7	Τ.								
				0.63	T								
				1 00									
2.10			2.10	1.00	\perp								
2.10			2.10										

LEGENDA:

CNW = MVT

contenuto in acqua massa volumica

il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova

LABORATORIO DIRETTORE

CIRC. 08/09/2010

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore

Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP 16/0393-01

DATA EMISSIONE:

10/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2

CAMPIONE: CI-1

PROFONDITA':

1.50

2.10

m

DIRETTORE DI LABORATORIO

CPR_001 (Rev. 1 del 04/05)

SPERIME

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP_16/0393-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0393 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-1 Profondità: 1.50

2.10

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA

24/10/2016

DATA TERMINE PROVA:

03/11/2016

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Da GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

File: CPR 006 GRA SED.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0393-02

DATA EMISSIONE:

10/11/2016

Pagina 2 di 2

ANALISI GRANULOMETRICA

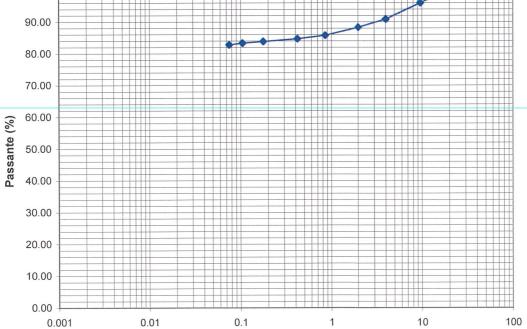
ASTM D 422

SONDAGGIO:

S 2

CAMPIONE:

CI-1


PROFONDITA':

1.50

2.10 m

Al	VALISI PER	VAGLIATUR	RA	ANALISI PER SE	DIMENTAZIONE
massa prov	rino - 29	96.98 g		massa provino	- g
profondità p	rovino	1.68 ÷	1.78 m	profondità provino	- ÷ - m
VAGLI APERTURA PASSANTE TRATTENUTO			G_s 2	2.750 - assunto	
	mm	% in peso	% in peso	Riferimento: -	
1 1/2 "	38.1	-	-	eseguita sul passante a	l vaglio 200
1"	25.4	-	-	aerometro ASTM 15	1H
3/4 "	19.05	100.00	0.00	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI
3/8 "	9.525	95.91	4.09	D (mm)	
5	4	90.77	5.14	-	-
10	2	88.26	2.52	-	-
20	0.85	85.73	2.53	-	-
30	0.59	-	-	-	-
40	0.42	84.63	1.10	-	-
50	0.297	-	-	-	-
80	0.177	83.82	0.81	-	-
100	0.149	-	-	-	-
140	0.105	83.27	0.55	-	-
200	0.075	82.78	0.50	-	-

ARGILLA		LIMO			SABBIA	١		GHIAIA		CIOTTOLI
ANGILLA	Fine	Medio	Gross.	Fine	Media	Gross.	Fine	Media	Gross	OIOTTOLI
100.00										
90.00							-			

Diametro dei granuli (mm)

DIRETTORE DI LABORATORIO

SETTORE "a" CIRC. 08/09/2010

entatore

CPR_006 (Rev. 1 del 04/05)

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Qualifornieriore File: CPR_006_GRA

+39-051768869 - Fax +39-0516058949 Sistema Qualità SINERGEA srl

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 311.

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 16/0393-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0393_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO: Dott. Andrea MASTRANGELO

COMMITTENTE: È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

fustella di acciaio

Sondaggio:

S 2

DESCRIZIONE CONTENITORE DEL CAMPIONE:

Campione:

CI-1

Profondità:

1.50

2.10

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da :

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

09/11/16

DATA TERMINE PROVA:

10/11/16

TIMBRO BLU

SPERIMENTATORE Dott. Enrico BERTOCCHI luco

Il Direttore di Laboratorio Dott. Geo Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CERTIFICATO n°

CSP_16/0393-03

DATA EMISSIONE:

10/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

- ASTM D4318 - Metodo A

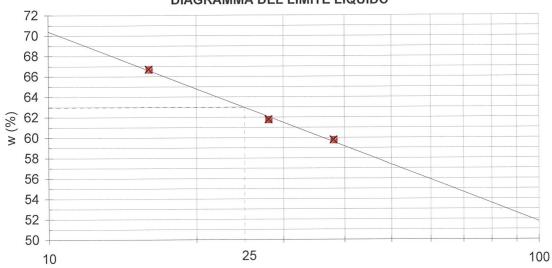
SONDAGGIO:

È VIETATA LA RIPRODUZIÒNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

S 2

CAMPIONE:

CI-1


PROFONDITA':

1.50

2.10 m

Profondità provino	m	1.68-1.78					
Determinazione	n°	1	2	3	4		
Massa tara	g	31.9443	46.7568	41.3676	-		
Numero colpi	-	16	28	38	-		
Massa provino umido + tara	g	57.0381	84.8424	75.2565	-		
Massa provino secco + tara	g	46.9985	70.3008	62.5789	-		
Contenuto in acqua	%	66.7	61.8	59.8	-		
Limite Liquido w _L	%		6	3			

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	17.341	19.9978	-	-
Massa provino umido + tara	g	19.9933	22.7316	-	-
Massa provino secco + tara	g	19.4378	22.1715	-	-
Contenuto in acqua	%	26.5	25.8	-	_
Limite Plastico w _P	%		2	6	

	Indice di Plasticità (w _L - w _P)
I _P	37

DIRETTORE DILABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR_008_LIM.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0393-04

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0393 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE :

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-1

Profondità:

1.50

2.10

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da :

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

ī			parameter and a second	
	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
1	TDR	Prova di taglio diretto CD	3	ASTM D 3080 / p.i.

DATA INIZIO PROVA:

21/10/16

DATA TERMINE PROVA:

28/10/16

SPERIMEN ATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €.10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0393-04

DATA EMISSIONE:

10/11/2016

Pagina 2 di 4

PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

S 2

CAMPIONE: CI-1

PROFONDITA':

1.50

2.10 m

Provino	1	2	3	4			LEGENDA
condizione	CR	CR	CR	-	CR	=	come ricevuto
Classe AGI	Q.5.	Q.5.	Q.5.	-	R T99	=	ricostruito AAHSTO T99
sezione	quadrata	quadrata	quadrata	quadrata	R T180	=	ricostruito AAHSTO T180
1.00	36 cm ²	36 cm ²	36 cm ²	36 cm ²	R	=	ricostruito come indicato in "Osservazioni"
z (m)	1.68-1.71	1.74-1.77	1.71-1.74	-	z	=	profondità del provino
h ₀ (mm)	20.00	20.00	20.00	-	h_0	=	altezza iniziale provino
w _i (%)	20.00	20.54	20.02	-	Wi	=	contenuto in acqua iniziale
Rifer. Certificato					W _f	=	contenuto in acqua a fine prova
γ (Mg/m³)	1.915	1.874	1.875	-	γ	=	massa volumica totale
Rifer. Certificato					γ _d	=	massa volumica provino secco
γ _d (Mg/m³)	1.596	1.555	1.562	-	γ_s	=	massa volumica della parte solida
G _s (-) assunto	2.750	2.750	2.750	-	γ_{w}	=	massa volumica dell' acqua alla temperatura T°
Rifer. Certificato	-				G_s	=	peso specifico dei grani
γ_s (Mg/m ³)	2.745	2.745	2.745	-	T	=	temperatura dell' acqua
T (°C)	20	20	20	-	е	=	indice dei vuoti
γ_w (Mg/m ³)	0.99823	0.99823	0.99823	-	n	=	porosità
e (-)	0.720	0.766	0.757	-	S	=	grado di saturazione
n (%)	41.86	43.36	43.09	-	σ_{v}	=	pressione verticale
S (%)	76.24	73.65	72.59	1-1	$ au_{\text{max}}$	=	massima tensione di taglio misurata
σ_v (kN/m ²)	147.1	294.2	441.3	-	$D_o \tau_{max}$	=	deformazione orizzontale alla massima tensione
τ _{max} (kN/m²)	93.9	152.6	219.7	-	$\tau_{\rm r}$	=	resistenza al taglio residua
$D_o \tau_{max}$ (mm)	1.39	1.92	2.85	-	D _{oc}	=	deformazione orizzontale cumulativa
h _{dc} (mm)	19.97	19.65	19.08	-	V_p	=	velocità avanzamento apparecchiatura - picco
t ₅₀ (min)			0.5	-	V_{Γ}	=	velocità avanzamento apparecchiatura - residuo
t _f stim. (min)			24	-	h _{dc}	=	altezza provino a fine consolidazione
v _p (mm/min)	0.005	0.005	0.005		t _f stim	=	tempo di rottura stimato
t _f eff. (min)	278	384	570	-	t _f eff.	=	tempo di rottura effettivo
v _r (mm/min)	-	-	-	-			
τ_r (kN/m ²)	-	-		-			
D _{oc} (mm)	-	-	-	-			
W _f (%)	24.70	24.14	23.11	-			
Rifer. Certificato							

DIRETTORE DI LABORATORIO

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

10/11/2016 CSP_16/0393-04 CERTIFICATO n° DATA EMISSIONE: Pagina 3 di 4 **ASTM D3080** PROVA DI TAGLIO DIRETTO C.D. **CAMPIONE**: CI-1 PROFONDITA': 1.50 2.10 m **SONDAGGIO:** S 2 PICCO RESIDUO 82 0 2 3 5 6 8 È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 361. -0.1 0 0.6 □ provino 1 △ provino 2 ♦ provino 3 provino 1 △ provino 2 provino 3 260 240 220 Tensione orizzontale (kN/m²) 200 180 160 140 120 100 80 60 40 20 0 0 3 5 81 82 Deformazione orizzontale (mm) DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0393-04

DATA EMISSIONE:

10/11/2016

Pagina 4 di 4

PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

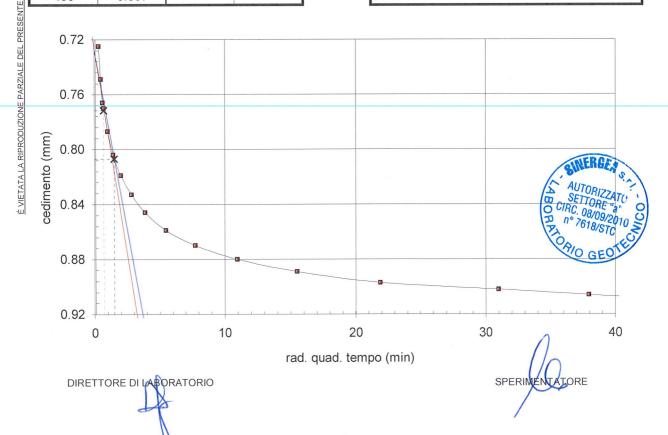
S 2

CAMPIONE:

CI-1

PROFONDITA':

1.50


2.10 m

DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96)

DLIL	1 /14111	IALIONE DELL'ANAMIETALDI OC	MOOLI	DALION	- 170	IVI DETO	0 00)		
RELATIVI ALL'	INTE	RVALLO DI PRESSIONE	da	294	kPa	а	441	kPa	
PROVINO n.	3	PROFONDITA'	da	1.71	m	а	1.74	m	

VALORI MISURATI							
I A DELLA SINERGEA SI	Tempo (min)	Cedim. (mm)	Tempo (min)	Cedim. (mm)			
FLLA	0.1	0.725	960	0.902			
ADE	0.25	0.749	1440	0.906			
	0.4	0.766	1800	0.908			
AUTORIZZAZIONE SCRI	0.5	0.770	2880	0.910			
ZAZIC	1	0.787	3600	-			
ORIZ	2	0.804	5760	-			
AUI	4	0.819					
ZAL	8	0.833					
A SEI	15	0.846					
ROV.	30	0.859					
DIF	60	0.870					
CATC	120	0.880					
E CERTIFICATO DI PROVA SENZA	240	0.889					
ECE	480	0.897					

VALORI CALCOLATI									
t ₉₀	(min)	=	2.25						
d ₉₀	(mm)	=	0.81						
t ₅₀	(min)	=	0.48						
d ₅₀	(mm)	=	0.77						
Tempo	per il raggiur	ngir	nento della rottura						
t _f	(min)	=	24						
c _v	(m² /sec)	=	5.806E-07						
m _v	(m²/kN)	=	1.099E-04						
k _v	(m /sec)	=	6.244E-10						

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

PROVA DI TAGLIO DIRETTO CD (ASTM D 3080) - INTERPOLAZIONE DATI

COMMITTENTE: SPEA Engineering spa

Pagina 1 di 1

LOCALITA':

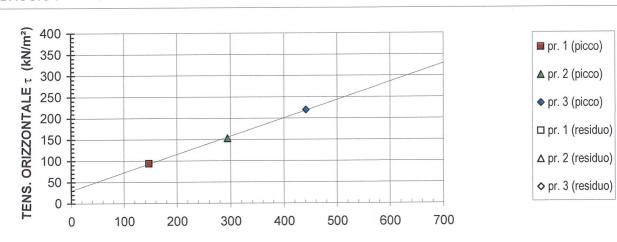
CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

SONDAGGIO:

S 2


CAMPIONE: CI-1

TENSIONE VERTICALE σ_v (kN/m²)

PROFONDITA':

1.50

2.10 m

		Risultati della regress						
		Valori di picco			Valori residui			
Intercetta sull' asse y	=	29.60	kN/m²	=	-	kN/m²		
inclinazione retta	=	23.15	° sess.	=	-	° sess.		

L'interpretazione sopra riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

NOTE:		
,		

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 10/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0394

CSP

DATA ACCETTAZIONE:

05/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CI-2

PROFONDITA' (m):

7.50-8.00

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

	CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA	
Ì	DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0394-01	
	LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0394-02	
	TRX01a	Prova triassiale UU, compresa saturazione del provino	2	ASTM D 2850	CSP 16/0394-03	

per SINERGEA sri

MOQ-024

(Rev. 4

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP_16/0394-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0394 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-2 Profondità: 7.50

8.00

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da :

È VIETATA LA RIPRODUZIÓNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SLI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

21/10/2016

DATA TERMINE PROVA:

21/10/2016

SPERIMENTATORE. Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

CPR_001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0394-01

DATA EMISSIONE

10/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-2

PROFONDITA':

7.50

8.00 **m**

Data descrizione

21/10/16

Forma del campione

: cilindrica

Qualità del campione (AGI):

Q.5.

Dimensioni del campione

: L = 52 cm; $\phi = 8.4 \text{ cm}$

Profondità		Descrizione						
da m	a m							
7.48	7.72	campione rimaneggiato						
7.72	7.87	A con L / L con A di colore grigio scuro (5Y 5/2)						
7.87	8.00	L con A / LA di colore grigo (5Y 5/1)						
		Presenza di calcinelli, veli e concrezioni calcarei,vpuntinature nerastre, macropori, mica.						
		Medio/Forte reazione a contatto con HCI 5%.						

EGENDA		= Argilla//	Argilloso Ghiaioso	L =	Limo/Limoso F = Fine	S = Sabbia/Sabbioso T = Torba/Torb M = Medio C = Grossolano	oso
				o a. "Munse		arts" (sigla tra parentesi)	
	1 61			'asse del ca		= parallelo all'asse del campione	
CCLIE		L CAMPIO		P.P.	T.V.	PROVE ESEGUITE	
Prof. Nor		Profond		(MPa)	(MPa)	FROVE ESEGUITE	
	minale	Proiona		(IVIPa)	(IVIPa)		
(m)			(m)				
7.50			7.48				
7.50							
			7.72				
			7.87	0.19 ⊥		CNW, MVT, LIM, TUU pr 1 e pr 2	
			7.07	0.24 ⊥			
8.00			8.00	0.1 _			

LEGENDA:

CNW = contenuto in acqua = massa volumica

il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova

DIRETTORE DI LABORATORIO

SETTORE "a" O'CIRC. 08/09/2010 Z

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0394-01

DATA EMISSIONE:

10/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2

CAMPIONE: CI-2

PROFONDITA':

7.50

8.00

m

DIRETTORE DI LABORATORIO

SPERIM

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0394-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0394 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE :

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

Sondaggio:

S 2

Campione:

CI-2

Profondità:

7.50

8.00

00

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

07/11/16

DATA TERMINE PROVA:

08/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio

Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

CERTIFICATO n°

CSP_16/0394-02

DATA EMISSIONE:

10/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

S 2

CAMPIONE:

CI-2


PROFONDITA':

7.50

8.00 m

Profondità provino	m	7.72-7.82					
Determinazione	n°	1	2	3	4		
Massa tara	g	33.7124	47.9773	43.4287	-		
Numero colpi	-	14	23	36	-		
Massa provino umido + tara	g	64.2495	82.9876	74.5536	-		
Massa provino secco + tara	g	54.5943	72.4308	65.5585	-		
Contenuto in acqua	%	46.2	43.2	40.6	-		
Limite Liquido w _∟	%	43					

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4	
Massa tara	g	20.3342	19.9981	-	-	
Massa provino umido + tara	g	22.5772	22.7796	_	_	
Massa provino secco + tara	g	22.1398	22.2411	-	-	
Contenuto in acqua	%	24.2	24.0	-	-	
Limite Plastico w _P	%	24				

	Indice di Plasticità (w _L - w _P)
I _P	19

DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0394-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0394 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

Profondità: CI-2

7.50

8.00

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

4				
7	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
É	TUU	Prova triassiale non consolidata non drenata	2	ASTM D 2850

DATA INIZIO PROVA:

26/10/16

DATA TERMINE PROVA:

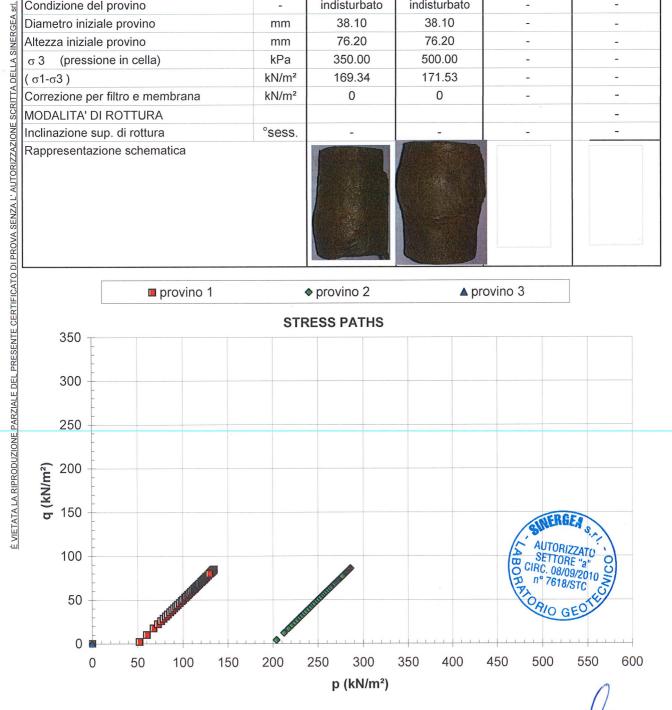
26/10/16

TIMBRO BLU SULL ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

File: CPR 028 TUU.xls


CERTIFICATO n°

CSP_16/0394-03

DATA EMISSIONE: 10/11/2016

Pagina 2 di 6

PROVA TRIASSIALE U.U.	ASTM D 2	850				
SONDAGGIO : S2 C	AMPIONE	: CI-2	PROFONDITA':	7.50	÷ 8.00	m
PROVINO	n°	1	2	-	-	
Profondità provino	da m	7.72	7.72	1-1	-	
Profondità provino	a m	7.82	7.82	-	-	
Condizione del provino	-	indisturbato	indisturbato	-	-	
Diametro iniziale provino	mm	38.10	38.10	-	-	
Altezza iniziale provino	mm	76.20	76.20	-	-	
σ 3 (pressione in cella)	kPa	350.00	500.00	-	-	
(\sigma 1-\sigma 3)	kN/m²	169.34	171.53	-	-	
Correzione per filtro e membrana	kN/m²	0	0	-	-	
MODALITA' DI ROTTURA					-	
Inclinazione sup. di rottura	°sess.	-	-	-	-	
Rappresentazione schematica						

IL DIRETTORE DEL LABORATORIO

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949 CPR_028 (Rev. 2 del 06/09) File : CPR_028_TUU.xls Sistema Qualità SINERGEA srl

SPERIMEN

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0394-03

DATA EMISSIONE:

10/11/2016

Pagina 3 di 6

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

È VIETATA I A RIBDONI IZIONE DARZIA E OFI PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

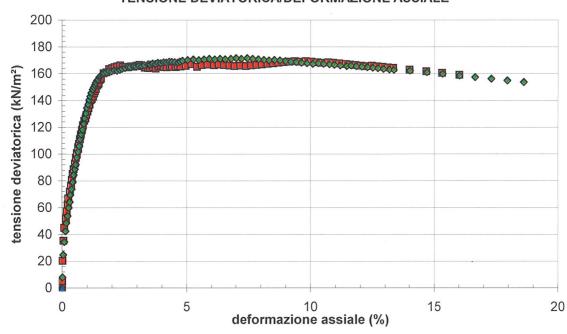
S 2

CAMPIONE

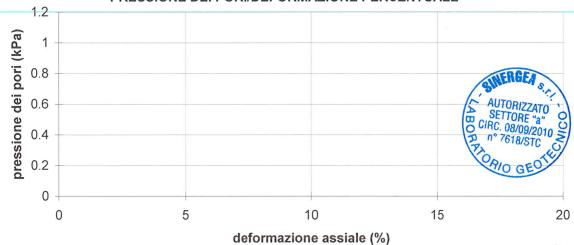
CI-2

PROFONDITA':

7.50


8.00

provino 1


provino 2

▲ provino 3

TENSIONE DEVIATORICA/DEFORMAZIONE ASSIALE

PRESSIONE DEI PORI/DEFORMAZIONE PERCENTUALE

IL DIRETTORE DEL LABORATORIO

SPERIM TORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR 028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0394-03

DATA EMISSIONE: 10/11/2016

Pagina 4 di 6

 PROVA TRIASSIALE U.U.
 ASTM D 2850

 SONDAGGIO : \$2
 CAMPIONE : CI-2
 PROFONDITA': 7.50 ÷ 8.00 m

PROVINO	n°	1	2	-	-
Profondità provino	da m	7.72	7.72	-	-
Profondità provino	a m	7.82	7.82	-	-
Condizione del provino	-	indisturbato	indisturbato	-	-
Diametro iniziale provino	mm	38.10	38.10	-	-
Altezza iniziale provino	mm	76.20	76.20	-	-
INIZIO PROVA					
Peso dell'unità di volume	kN/m³	18.43	18.67	-	-
Riferimento					
Contenuto in acqua iniziale	%	31.43	30.15		-
Riferimento					
Peso un. volume secco iniziale	kN/m³	14.02	14.34	-	
Peso sp. dei grani (assunto)	-	2.750	2.750	-	-
Riferimento					
Indice dei vuoti iniziale	-	0.920	0.877	-	-
Grado di saturazione iniziale	%	93.82	94.35	-	-
FASE DI SATURAZIONE					
Pressione pori iniziale	kPa				-
Valore di B iniziale	-				-
Pressione pori a saturazione	kPa				-
Pressione in cella finale	kPa				-
Valore di B a saturazione	-				-
FASE DI COMPRESSIONE					
Pressione in cella	kPa	350	500	-	-
Pressione pori iniziale	kPa	299	444	_	
σ' ₃	kPa	2	57	-	-
Velocità pressa	mm/min	1.0000	1.0000	-	-
CONDIZIONI A ROTTURA					
Deformaz. assiale percentuale	%	9.37	6.99		-
$(\sigma_1 - \sigma_3)$	kN/m²	169.34	171.53	-	-
Correzione per filtro e membrana	kN/m²	0	0	-	
p a rottura	kN/m²	134.67	285.77	-	SINENGEA
g a rottura	kN/m²	84.67	85.77	-	AUTORIZZATO
FINE PROVA					O CIRC. 08/00/20
Peso dell'unità di volume finale	kN/m³	18.78	19.01	-	O CIRC. 08/09/201
Contenuto in acqua finale	%	32.52	30.99	-	100 - A
Peso un. volume secco finale	kN/m³	14.17	14.51	-	ORIO GEOT
Indice dei vuoti finale	-	0.900	0.855	-	-
Grado di saturazione finale	%	99.19	99.49	0 -	-

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

CERTIFICATO n°

È VIETATA LA RIPRODUZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

CSP_16/0394-03

DATA EMISSIONE:

10/11/2016

Pagina 5 di 6

PROVA TRIASSIALE U.U.	ASTM D 2850
-----------------------	--------------------

SONDAGGIO: S2 CAMPIONE: CI-2 PROFONDITA': 7.50 ÷ 8.00 m

					PROV	INO 1		
lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)
1	0.004	5	51	2.172	193	101	9.111	214
2	0.013	23	52	2.258	194	102	9.279	214
3	0.042	40	53	2.345	195	103	9.442	215
4	0.070	51	54	2.427	194	104	9.599	215
5	0.115	59	55	2.512	193	105	9.766	215
6	0.142	65	56	2.602	193	106	9.937	215
7	0.176	71	57	2.670	193	107	10.111	215
8	0.195	76	58	2.755	194	108	10.610	215
9	0.241	82	59	2.842	193	109	11.121	215
10	0.277	87	60	2.929	195	110	11.606	215
11	0.298	92	61	2.999	196	111	12.137	215
12	0.326	97	62	3.085	195	112	-	-
13	0.353	101	63	3.173	195	113	-	-
14	0.390	106	64	3.268	196	114	-	-
15	0.422	111	65	3.339	196	115	-	-
16	0.448	115	66	3.447	196	116	=	-
17	0.490	120	67	3.509	197	117	-	-
18	0.515	123	68	3.600	197	118	-	-
19	0.541	127	69	3.758	198	119	2	-
20	0.571	131	70	3.934	200	120	-	-
21	0.603	135	71	4.106	198	121	-	-
22	0.636	139	72	4.254	200	122	-	-
23	0.671	143	73	4.426	201	123	*	-
24	0.709	145	74	4.631	201	124	-	-
25	0.734	148	75	4.773	202	125	-	-
26	0.772	151	76	4.940	202	126	-	=
27	0.805	154	77	5.106	202	127	-	-
28	0.838	157	78	5.261	202	128	-	-
29	0.872	161	79	5.438	203	129	-	-
30	0.905	162	80	5.608	203	130	-	-
31	0.941	164	81	5.771	204	131	-	-
32	0.972	167	82	5.935	205	132	-	-
33	0.995	169	83	6.102	206	133	-	=
34	1.024	171	84	6.270	207	134	-	-
35	1.059	174	85	6.442	208	135	-	-
36	1.093	175	86	6.604	209	136	-	-
37	1.115	176	87	6.765	210	137	-	-
38	1.147	179	88	6.941	211	138	-	-
39	1.181	180	89	7.102	212	139	-	-
40	1.259	185	90	7.278	212	140	-	-
41	1.347	186	91	7.438	213	141	-	-
42	1.428	189	92	7.600	213	142	-	-
43	1.512	190	93	7.783	213	143	-	-
44	1.591	191	94	7.936	213	144	-	-
45	1.675	192	95	8.113	214	145	-	-
46	1.767	193	96	8.262	214	146	-	-
47	1.841	192	97	8.445	214	147	-	-
48	1.921	192	98	8.644	214	148	-	-
49	2.001	192	99	8.775	214	149	-	-
50	2.090	193	100	8.942	214	150	-	-

AUTORIZZATO
SETTORE "a"
OGIRC. 08/09/2010
N° 7618/STC
ORIO GEO

IL DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granardio dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°

CSP_16/0394-03

DATA EMISSIONE:

10/11/2016

Pagina 6 di 6

PROVA	TRIASSI	ALE U.U.					AS	STM D 2	2850			
SONDA	GGIO :	S 2	CAMPIC	NE: CI	-2	PF	ROFOND	ITA':	7.50	÷	8.00	m
					PROV	INO 2						
lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N	1)			
1	0.010	9	51	2.233	193	101	9.126	213	,			
2	0.034	28	52	2.320	194	102	9.297	213				
3	0.069	39	53	2.407	194	103	9.459	213				
4	0.100	48	54	2.490	195	104	9.620	213				
5			55			105						
6	0.127	55		2.603	196		9.785	213				
	0.166	61	56	2.658	196	106	9.971	213				
7	0.199	68	57	2.740	197	107	10.121	213				
8	0.229	73	58	2.829	197	108	10.617	214				
9	0.253	79	59	2.902	198	109	11.131	214				
10	0.289	84	60	2.989	198	110	11.619	214				
11	0.325	90	61	3.076	199	111	12.132	214				
12	0.354	96	62	3.151	199	112	12.611	214				
13	0.387	101	63	3.247	200	113	13.113	214				
14	0.415	105	64	3.322	200	114	13.599	214				
15	0.450	111	65	3.414	200	115	14.097	214				
16	0.489	116	66	3.507	200	116	-	-				
17	0.409	121	67	3.576	200	117	-	-				
18			68			118	-	-				
	0.549	127		3.652	202		-	-				
19	0.582	131	69	3.813	203	119	-	-				
20	0.620	135	70	3.984	204	120	-	-				
21	0.654	140	71	4.153	204	121	-	-				
22	0.687	145	72	4.314	205	122	1-	-				
23	0.720	149	73	4.474	206	123	-	-				
24	0.751	154	74	4.644	206	124	-	-				
25	0.791	157	75	4.805	207	125	-	-				
26	0.821	161	76	4.961	207	126	-	-				
27	0.852	164	77	5.142	208	127	-	-				
28	0.882	167	78	5.299	209	128	_	_				
29	0.922	170	79	5.460	209	129	_	_				
30	0.959	172	80	5.642	210	130						
31	0.990	174	81	5.809	210	131		-				
32	1.017	174	82	5.984	210	132	-	-				
33			83			133	-	-				
34	1.054	178	84	6.151	210	134	-	-				
	1.089	179		6.307	210		-	-				
35	1.120	181	85	6.471	211	135	-	-				
36	1.153	182	86	6.640	211	136	-	-				
37	1.182	183	87	6.810	211	137	-	-				
38	1.218	184	88	6.973	211	138	-	-				
39	1.252	185	89	7.137	211	139	-	-				
40	1.333	186	90	7.297	211	140	-	-				
41	1.412	187	91	7.468	211	141	-	-				
42	1.495	187	92	7.640	211	142	-	-			OWERG	A.
43	1.578	188	93	7.806	212	143		_		/	. 3	0.4
44	1.665	188	94	7.964	212	144				15	AUTORIZ SETTORI CIRC. 08/09 n° 7618/5	ZATO
45	1.749	189	95	8.145	212	145	-	-		180H	CIRC	"a"
46			95 96			146	-	-		10	n° 7610	/2010
	1.820	190		8.291	212		-	-		15	N 1018/8	olc ,
47 40	1.908	191	97	8.466	212	147	-	-			PAID -	=OTY
48	1.991	192	98	8.668	212	148	-				O G	
49	2.059	192	99	8.795	213	149	-	-				
50	2.163	193	100	8.957	213	150	-	-			2	

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

IL DIRETTORE DI LABORATORIO

Sperime

PROVA TRIASSIALE UU (ASTM D 2850) - INTERPOLAZIONE DATI

COMMITTENTE:

SPEA Engineering spa

Pagina 1 di 1

a m

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA EMISSIONE:

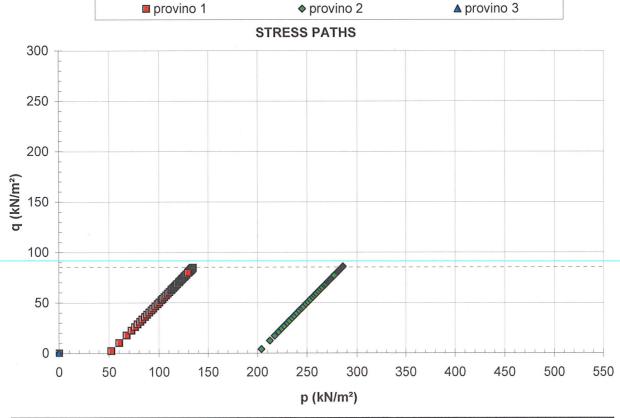
10/11/2016

SONDAGGIO:

S 2

PROFONDITA': da m

7.50


8.00

CAMPIONE: CI-2

> L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Intercetta sull' asse y Inclinazione retta				
Risultati della regressione lineare	(kN/m²)	(°sess.)			
	85.22	0.00			

Interpretazione eseguita su due provini, imponendo f=0

NOTE:			

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 10/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0395

CSP

DATA ACCETTAZIONE:

05/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CI-3

PROFONDITA' (m):

12.00-12.50

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0395-01
GRT04	Granulometria combinata per vagliatura e sedimentazione	1	ASTM D 422	CSP 16/0395-02
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0395-03
TDR01a	Prova di taglio diretto, Consolidata Drenata (C.D.), eseguita su tre provini	1	ASTM D 3080	CSP 16/0395-04
TRX01a.1	Prova triassiale UU, eseguita su tre provini, compresa saturazione	1	ASTM D 2850	CSP 16/0395-05

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC) 40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP 16/0395-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0395_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

Profondità: CI-3

12.00 -

12.50

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIÒNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZAL AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

[CODICE	DDICE DESCRIZIONE PROVA		NORMATIVA DI RIFERIMENTO	
1	DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84	

DATA INIZIO PROVA:

23/10/2016

DATA TERMINE PROVA:

23/10/2016

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE ott. Enrico BERTOCCHI LUGO

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR 001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0395-01

DATA EMISSIONE

10/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-3

PROFONDITA':

12.00 ÷ 12.50 **m**

Data descrizione

23/10/16

Forma del campione

: cilindrica

Qualità del campione (AGI):

Q.5.

Dimensioni del campione

: L = 52 cm; ϕ = 8,4 cm

Profe	ondità					Descrizione				
da m	a m									
11.98	12.00	0 car	campione rimaneggiato							
12.00	12.50		L A debolmente S di colore grigio verdastro (N 5/1) Presenza di veli e puntinature nerastre, veli e concrezioni calcarei, calcinelli, mi							
		Ме	dio/Forte	reazione a	contatto o	con HCI 5%.				
LEGENDA		Ghiaia/ colori si fa								
SCHEN			P.P.	T.V.	PROVE ESEGUITE					
			ità reale (m)	(MPa)	(MPa)					
12.00			11.98 12.00	,						
				0.10 =						
				0.10 ⊥						
				0.14						
				0.14 _						

$_{\perp}$ = perpendicolare all'asse de					mpione	= parallelo all'asse del campione
SCH	IEMA DE	_ CAMPI	SNE	P.P.	T.V.	PROVE ESEGUITE
				(MPa)	(MPa)	
(m) (m)						
12.00			11.98 12.00	0.10 = 0.10 \(\psi\)		
				0.14 _		
				0.12 ⊥		
						CNW, MVT, TUU pr 3
-				0.07 ⊥		CNW, MVT, TUU pr 1 e pr 2 GRA, LIM
				0.11 ⊥		
12.50			12.50	0.13 =		CNW, MVT, TDR
LEGENDA	: CNW	= conten	uto in acqu	a il si	gnificato de	egli altri codici, è riportato sulla prima pagina dei certificati di prova

DIRETTORE DIABORATORIO

MVT

= massa volumica

AUTORIZZATO SETTORE "a" CIRC. 08/09/2010 n° 7618/STC

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quanto Meriore Tel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0395-01

DATA EMISSIONE:

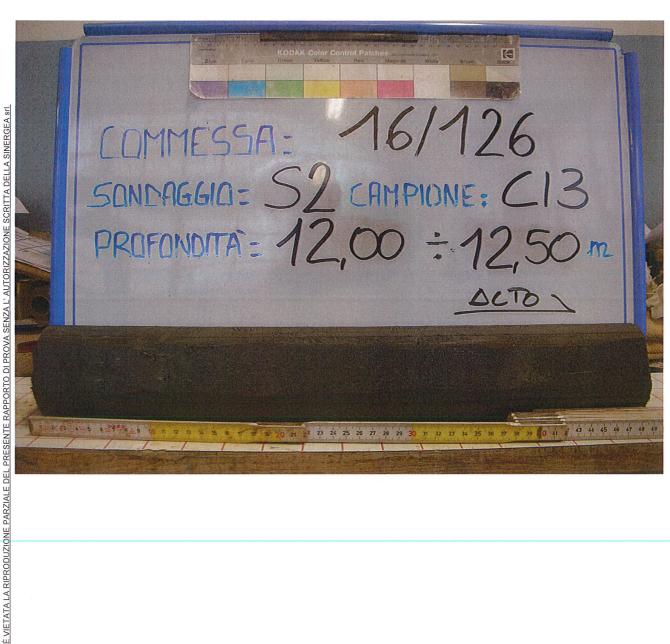
10/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2


CAMPIONE: CI-3

PROFONDITA':

12.00

12.50

m

DIRETTORE DIABORATORIO

SPERIMENT

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP 16/0395-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0395_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-3 Profondità: 12.00 -12.50

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIÓNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA:

27/10/2016

DATA TERMINE PROVA:

09/11/2016

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott: Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Darid GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR 006 (Rev. 1 del 04/05)

File: CPR_006_GRA_SED.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0395-02

DATA EMISSIONE:

10/11/2016

Pagina 2 di 2

ANALISI GRANULOMETRICA

ASTM D 422

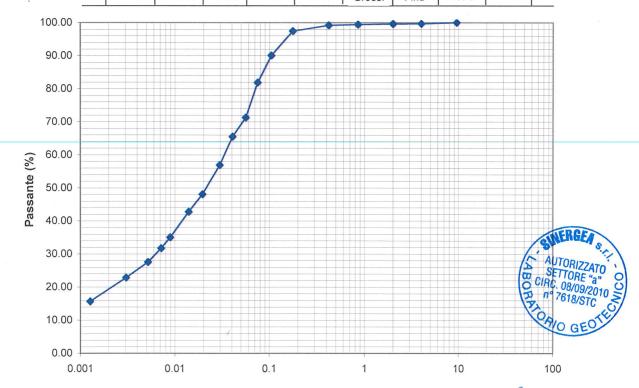
SONDAGGIO:

S 2

CAMPIONE:

CI-3

PROFONDITA':


12.00

12.50 m

Al	NALISI PER	VAGLIATUR	RA	ANALISI PER SE	EDIMENTAZIONE
massa prov	massa provino - 383.60 g			massa provino 4	6.46 g
profondità p	provino 1	2.23 ÷ 1	2.50 m	profondità provino 1	2.23 ÷ 12.50 m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	2.750 - assunto
	mm	% in peso	% in peso	Riferimento: -	
1 1/2 "	38.1	-	-	eseguita sul passante a	l vaglio 200
1 "	25.4	-	-	aerometro ASTM 15	1H
3/4 "	19.05	-	-	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI D
3/8 "	9.525	100.00	0.00	D (mm)	
5	4	99.66	0.34	0.05609	71.27
10	2	99.59	0.07	0.04064	65.46
20	0.85	99.42	0.17	0.02973	56.88
30	0.59	-	-	0.01943	48.02
40	0.42	99.18	0.24	0.01400	42.76
50	0.297	-	-	0.00891	35.01
80	0.177	97.40	1.78	0.00717	31.69
100	0.149	-	-	0.00520	27.54
140	0.105	90.04	7.36	0.00305	22.83
200	0.075	81.83	8.21	0.00127	15.64

ARGILLA LIMO SABBIA GHIAIA

Fine Medio Gross. Fine Media Gross. Fine Media Gross

Diametro dei granuli (mm)

DIRETTORE DI LABORATORIO

Sperimentatore

<u>Ė VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri, </u>

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0395-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0395 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

Sondaggio:

S 2

Campione:

CI-3 Profondità: 12.00 -

12.50

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGFA s^{AL}

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

07/11/16

DATA TERMINE PROVA:

08/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR_008 (Rev. 1 del 04/05)

File: CPR_008_LIM.xls

CERTIFICATO n°

CSP_16/0395-03

DATA EMISSIONE:

10/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

- ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

S 2

CAMPIONE:

CI-3

PROFONDITA':

12.00 ÷

12.50 m

Profondità provino	m 12.23-12.50					
Determinazione	n°	1	2	3	4	
Massa tara	g	36.5695	46.7564	42.8965	-	
Numero colpi	-	33	20	12	-	
Massa provino umido + tara	g	72.6309	80.2023	76.3369	-	
Massa provino secco + tara	g	64.6732	72.4543	68.2214	-	
Contenuto in acqua	%	28.3	30.2	32.0	-	
Limite Liquido w _∟	%	29				

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4	
Massa tara	g	17.1477	17.3409	-	-	
Massa provino umido + tara	g	19.8788	19.5746	-	-	
Massa provino secco + tara	g	19.4474	19.2367	-	-	
Contenuto in acqua	%	18.8	17.8	-	-	
Limite Plastico w _P	%	18				

	Indice di Plasticità (w _L - w _P)
I _P	11

DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 16/0395-04

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0395_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-3 Profondità: 12.00 -

12.50

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO	
TDR	Prova di taglio diretto CD	3	ASTM D 3080 / p.i.	

DATA INIZIO PROVA:

25/10/16

DATA TERMINE PROVA:

29/10/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €.10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0395-04

DATA EMISSIONE:

10/11/2016

Pagina 2 di 4

PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

S 2

CAMPIONE: CI-3

PROFONDITA': 12.00 ÷ 12.50 m

Provino	1	2	3	4			LEGENDA
condizione	CR	CR	CR	-	CR	=	come ricevuto
Classe AGI	Q.5.	Q.5.	Q.5.	-	R T99	=	ricostruito AAHSTO T99
sezione	quadrata	quadrata	quadrata	quadrata	R T180	=	ricostruito AAHSTO T180
	36 cm ²	36 cm ²	36 cm ²	36 cm ²	R	=	ricostruito come indicato in "Osservazioni"
z (m)	12.41-12.44	12.47-12.50	6.21-6.24	-	z	=	profondità del provino
h ₀ (mm)	20.00	20.00	20.00	-	h_0	=	altezza iniziale provino
w _i (%)	26.20	26.33	26.55	-	Wi	=	contenuto in acqua iniziale
Rifer. Certificato					W _f	=	contenuto in acqua a fine prova
γ (Mg/m³)	1.834	1.873	1.798	-	γ	=	massa volumica totale
Rifer. Certificato				O V	γ _d	=	massa volumica provino secco
γ _d (Mg/m³)	1.453	1.482	1.421	-	γs	=	massa volumica della parte solida
G _s (-) assunto	2.750	2.750	2.750	-	γw	=	massa volumica dell' acqua alla temperatura T°
Rifer. Certificato	-				Gs	=	peso specifico dei grani
γ_s (Mg/m ³)	2.745	2.745	2.745	-	Т	=	temperatura dell' acqua
T (°C)	20	20	20	-	е	=	indice dei vuoti
γ_w (Mg/m ³)	0.99823	0.99823	0.99823	-	n	=	porosità
e (-)	0.889	0.852	0.932	-	S	=	grado di saturazione
n (%)	47.07	46.00	48.25	-	σ_{v}	=	pressione verticale
S (%)	80.90	84.85	78.17	-	τ_{max}	=	massima tensione di taglio misurata
σ_v (kN/m ²)	49.0	98.1	196.1	-	$D_o \tau_{max}$	=	deformazione orizzontale alla massima tensione
τ _{max} (kN/m²)	30.9	60.1	117.7	-	τ_{r}	=	resistenza al taglio residua
D _o τ _{max} (mm)	4.02	2.46	6.03	-	D _{oc}	=	deformazione orizzontale cumulativa
h _{dc} (mm)	19.97	19.46	18.98	-	V_p	=	velocità avanzamento apparecchiatura - picco
t ₅₀ (min)		11	0.3	-	V _r	=	velocità avanzamento apparecchiatura - residuo
t _f stim. (min)			13	-	h _{dc}	=	altezza provino a fine consolidazione
v _p (mm/min)	0.005	0.005	0.005	-	t _f stim	=	tempo di rottura stimato
t _f eff. (min)	804	492	1206	-	t _f eff.	=	tempo di rottura effettivo
v _r (mm/min)	-	-	-	-			
τ_r (kN/m ²)	-	-	-	-			
D _{oc} (mm)	-	-	-	-			
W _f (%)	25.79	24.55	22.63	-			
Rifer. Certificato							

DIRETTORE DI LABORATORIO

SPERIME

CPR_014 (Rev. 1 del 04/05)

File: CPR_013_TDR.xls

CERTIFICATO n°

CSP_16/0395-04

DATA EMISSIONE:

10/11/2016

Pagina 3 di 4

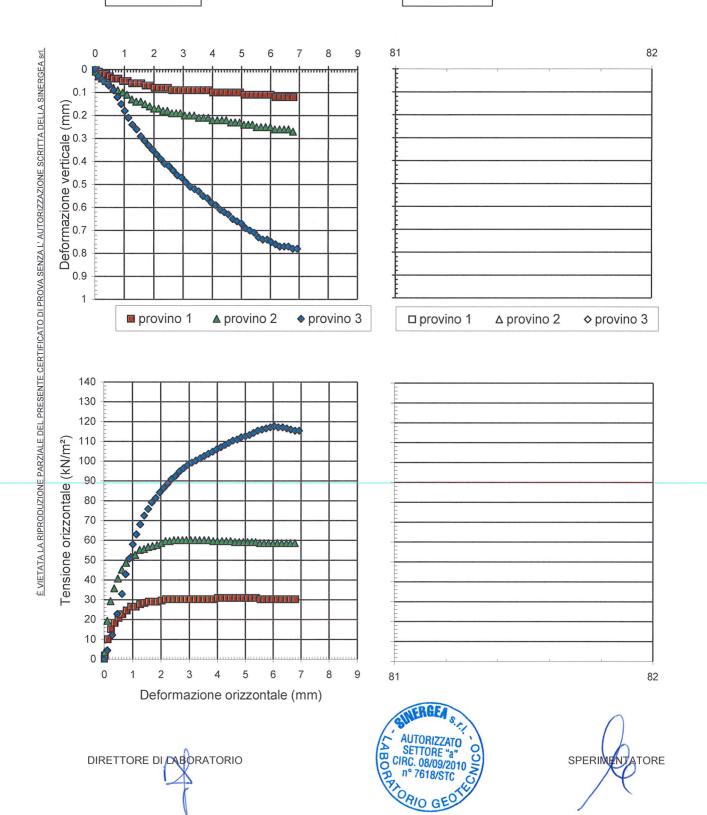
PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

S 2

CAMPIONE: CI-3


PROFONDITA':

12.00 ÷

12.50 m

PICCO

RESIDUO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CSP_16/0395-04

DATA EMISSIONE:

10/11/2016

Pagina 4 di 4

PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

60

120

240

480

S 2

CAMPIONE:

CI-3

PROFONDITA':

12.00

÷ 12.50 m

DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96)

RELATIVI ALL' INTERVALLO DI PRESSIONE PROVINO n. PROFONDITA' 3

da da

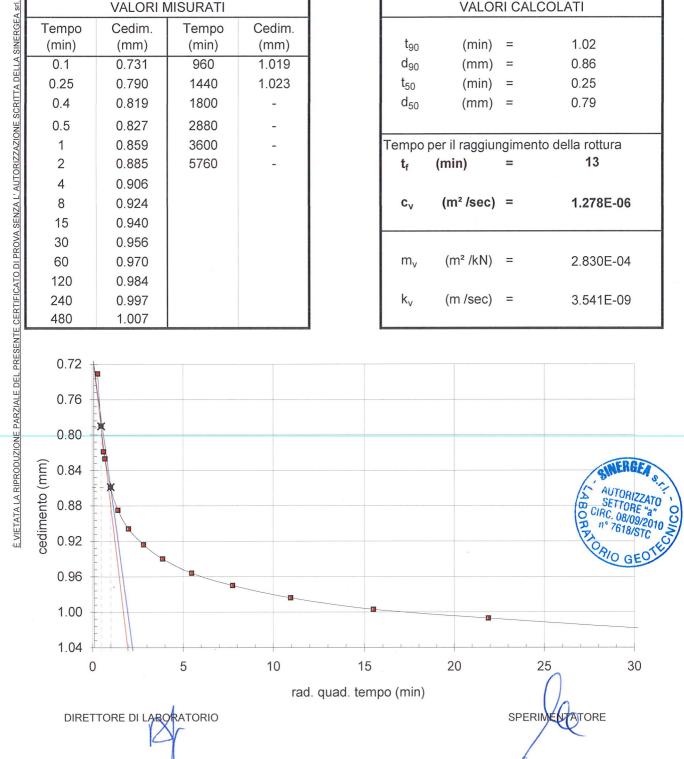
98 kPa 12.44 m

196 12.47 а

kPa m

	VALORI MISURATI						
Tempo (min)	Cedim. (mm)	Tempo (min)	Cedim. (mm)				
0.1	0.731	960	1.019				
0.25	0.790	1440	1.023				
0.4	0.819	1800	-				
0.5	0.827	2880	-				

ILLA	0.1	0.731	960	1.019
ADE	0.25	0.790	1440	1.023
ב כ	0.4	0.819	1800	-
INE SI	0.5	0.827	2880	-
AZIC	1	0.859	3600	-
אווער	2	0.885	5760	-
AOL	4	0.906		
ZA L	8	0.924		
SEN	15	0.940		
NA N	30	0.956		


0.970

0.984

0.997

1.007

VALORI CALCOLATI						
t ₉₀	(min)	=	1.02			
d ₉₀	(mm)	=	0.86			
t ₅₀	(min)	=	0.25			
d ₅₀	(mm)	=	0.79			
Tempo	per il raggiur	ngime	ento della rottura			
t _f	(min)	=	13			
t _f c _v	(min) (m² /sec)	=	13 1.278E-06			
		=				
c _v	(m² /sec)		1.278E-06			
c _v	(m² /sec)	=	1.278E-06			

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

PROVA DI TAGLIO DIRETTO CD (ASTM D 3080) - INTERPOLAZIONE DATI

COMMITTENTE: SPEA Engineering spa

Pagina 1 di 1

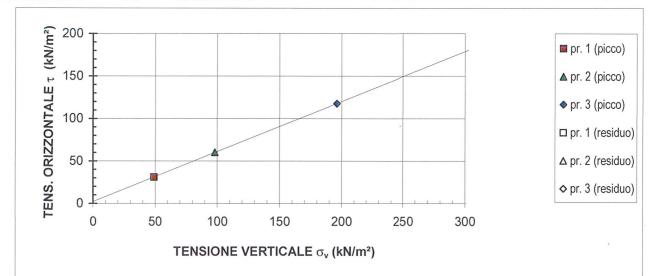
LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

SONDAGGIO:


S 2

CAMPIONE: CI-3

PROFONDITA':

12.00

12.50 m

	Risultati della regressione lineare						
	Valori di picco			Valori residui			
Intercetta sull' asse y	=	2.13	kN/m²	=	-	kN/m²	
inclinazione retta	=	30.51	° sess.	=	-	° sess.	

L'interpretazione sopra riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

NOTE:		

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini. 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 16/0395-05

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0395 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-3 Profondità: 12.00 12.50

m

DATA PRELIEVO:

30/09/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONÈ PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
TUU	Prova triassiale non consolidata non drenata	3	ASTM D 2850

DATA INIZIO PROVA:

27/10/16

DATA TERMINE PROVA:

27/10/16

TIMBRO BLU SULL' ORIGINALE

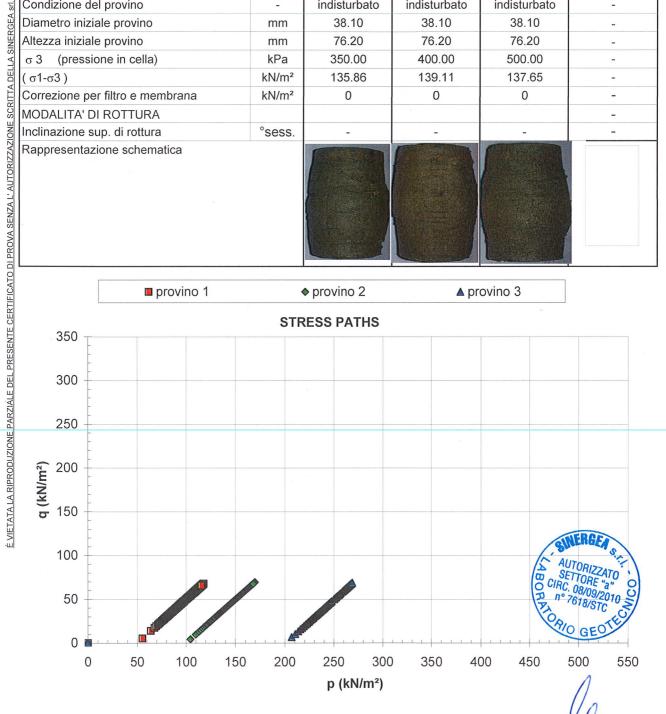
SPER MENTATORE Dott. Enrico/BERTOCCHI IL DIRETTORE DEL LABORATORIO Dott. Geol. David GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

File: CPR_028_TUU.xls

CERTIFICATO n°

CSP_16/0395-05


DATA EMISSIONE: 10/11/2016

Pagina 2 di 7

SPERIMEN

ATORE

PROVA TRIASSIALE U.U.		ASTM D 2850						
SONDAGGIO : S 2	CAMPIONE	: CI-3	PROFONDITA':	12.00	÷ 12.50	m		
PROVINO	n°	1	2	3	_			
Profondità provino	da m	12.32	12.32	12.23	-			
Profondità provino	a m	12.41	12.41	12.32	-			
Condizione del provino	-	indisturbato	indisturbato	indisturbato	-			
Diametro iniziale provino	mm	38.10	38.10	38.10	-			
Altezza iniziale provino	mm	76.20	76.20	76.20	-			
σ 3 (pressione in cella)	kPa	350.00	400.00	500.00	-			
(σ 1- σ 3)	kN/m²	135.86	139.11	137.65	-			
Correzione per filtro e membrana	kN/m²	0	0	0	-			
MODALITA' DI ROTTURA			,		-			
Inclinazione sup. di rottura	°sess.	-	-	-	-			
Rappresentazione schematica								

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949 CPR_028 (Rev. 2 del 06/09) File : CPR_028_TUU.xls Sistema Qualità SINERGEA srl

IL DIRETTORE DEL LABORATORIO

CERTIFICATO n°

CSP_16/0395-05

DATA EMISSIONE:

10/11/2016

Pagina 3 di 7

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

È VIETATA I A RIPRONI IZIONE PARZIAI E NEI P<u>RESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL</u>

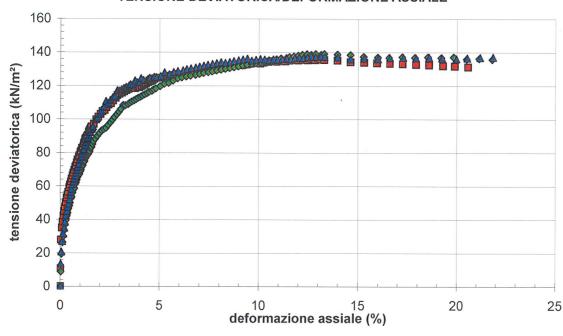
S 2

CAMPIONE

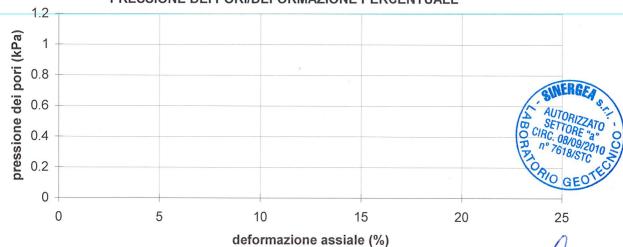
CI-3

PROFONDITA':

12.00


12.50 m

provino 1


provino 2

△ provino 3

TENSIONE DEVIATORICA/DEFORMAZIONE ASSIALE

PRESSIONE DEI PORI/DEFORMAZIONE PERCENTUALE

IL DIRETTORE DEL LABORATORIO

SPERIM

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0395-05

DATA EMISSIONE: 10/11/2016

Pagina 4 di 7

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

S 2

CAMPIONE :

CI-3

PROFONDITA':

12.00 ÷ 12.50 m

	PROVINO	n°	1	2	3	-
Srl.	Profondità provino	da m	12.32	12.32	12.23	-
GEA	Profondità provino	a m	12.41	12.41	12.32	-
NER	Condizione del provino	-	indisturbato	indisturbato	indisturbato	-
ASI	Diametro iniziale provino	mm	38.10	38.10	38.10	-
DEL	Altezza iniziale provino	mm	76.20	76.20	76.20	-
T	INIZIO PROVA					
SCRI	Peso dell'unità di volume	kN/m³	18.87	18.92	18.97	-
NE	Riferimento					
AZIC	Contenuto in acqua iniziale	%	27.49	27.50	27.03	-
RIZ	Riferimento					
UTC	Peso un. volume secco iniziale	kN/m³	14.81	14.84	14.94	-
4 L. /	Peso sp. dei grani (assunto)	-	2.750	2.750	2.75	-
ENZ	Riferimento					
VA S	Indice dei vuoti iniziale	-	0.818	0.814	0.802	-
È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri	Grado di saturazione iniziale	%	92.20	92.72	92.48	-
ПО	FASE DI SATURAZIONE					
CAT	Pressione pori iniziale	kPa				-
XTIF!	Valore di B iniziale	-				-
CE	Pressione pori a saturazione	kPa				-
Ĭ.	Pressione in cella finale	kPa				-
RESI	Valore di B a saturazione	-				-
E P	FASE DI COMPRESSIONE					
LE D	Pressione in cella	kPa	350	400	500	-
ZZIA	Pressione pori iniziale	kPa	303	351	447	_
PAI	σ' ₃	kPa	52	52	53	-
ON	Velocità pressa	mm/min	1.0000	1.0000	1.0000	-
DOZ	CONDIZIONI A ROTTURA					
IPRO	Deformaz. assiale percentuale	%	13.10	13.30	13.11	-
LAR	$(\sigma_1 - \sigma_3)$	kN/m²	135.86	139.11	137.65	-
ATA	Correzione per filtro e membrana	kN/m²	0	0	0	-
VIET	p a rottura	kN/m²	117.93	169.55	268.83	-
Ш	q a rottura	kN/m²	67.93	69.55	68.83	-
	FINE PROVA	•				
	Peso dell'unità di volume finale	kN/m³	19.38	19.28	19.52	SINERGI
	Contenuto in acqua finale	%	27.66	29.15	27.18	/ /-
	Peso un. volume secco finale	kN/m³	15.18	14.93	15.35	AUTORIZZ
	Indice dei vuoti finale	7-1	0.774	0.804	0.754	O URC LURE
	Grado di saturazione finale	%	98.14	99.56	/) 99.00	D 10° 7618/ST

IL DIRETTORE DEL LABORATORIO

SPERMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

CSP_16/0395-05

DATA EMISSIONE:

10/11/2016

Pagina 5 di 7

DDOMA	TDIAGO		-		
PROVA	TRIASS	IAL		U.U	_

SONDAGGIO : S2

È VIETATA LA RIPRODUZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA S11.

ASTM D 2850

CAMPIONE: CI-3

PROFONDITA':

12.00

12.50

m

					PROV	INO 1		
lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)
1	0.005	12	51	2.196	131	101	9.133	171
2	0.028	31	52	2.280	132	102	9.303	172
3	0.067	39	53	2.375	133	103	9.483	172
4	0.100	43	54	2.448	134	104	9.632	173
5	0.128	47	55	2.534	135	105	9.784	173
6	0.160	50	56	2.612	136	106	9.975	174
7	0.181	53	57	2.696	137	107	10.127	174
8	0.212	56	58	2.788	138	108	10.634	175
9	0.250	59	59	2.867	137	109	11.130	175
10	0.279	61	60	2.956	138	110	11.644	176
11	0.310	63	61	3.036	138	111	12.131	177
12	0.346	66	62	3.122	139	112	12.639	178
13	0.372	68	63	3.212	140	113	13.128	179
14	0.407	70	64	3.282	141	114	13.639	180
15	0.434	72	65	3.365	142	115	14.146	181
16	0.467	74	66	3.471	143	116	14.684	182
17	0.500	76	67	3.539	144	117	15.139	183
18	0.533	78	68	3.610	145	118	15.654	184
19	0.572	80	69	3.775	146	119	10.004	104
20	0.599	81	70	3.951	147	120	-	-
21	0.633	83	71	4.111	148	121		-
22	0.664	85	72	4.292	149	122	-	-
23	0.710	87	73	4.449	150	123	-	
24	0.738	88	74	4.627	150	124	-	-
25	0.774	90	75	4.785	151	125		-
26	0.797	91	76	4.957	152	126	-	-
27	0.827	93	77	5.133	153	127		-
28	0.872	94	78	5.297	154	128		
29	0.897	96	79	5.464	155	129	_	
30	0.922	97	80	5.643	156	130	_	
31	0.949	99	81	5.793	156	131		
32	0.978	100	82	5.967	157	132		
33	1.018	101	83	6.149	158	133	_	_
34	1.050	102	84	6.303	159	134	-	-
35	1.091	104	85	6.455	160	135	-	_
36	1.109	105	86	6.643	161	136	-	_
37	1.140	106	87	6.799	162	137	-	_
38	1.173	107	88	6.968	162	138	-	¥ .
39	1.199	108	89	7.142	163	139	-	_
40	1.290	110	90	7.295	164	140	-	-
41	1.378	113	91	7.462	165	141	-	_
42	1.460	115	92	7.665	165	142		_
43	1.548	117	93	7.791	166	143	-	-
44	1.621	119	94	7.968	167	144	_	-
45	1.710	120	95	8.162	168	145	_	_
46	1.781	122	96	8.298	168	146	-	-
47	1.860	124	97	8.475	169	147	-	_
48	1.953	125	98	8.629	169	148	-	-
49	2.032	127	99	8.794	170	149		-
50	2.132	129	100	8.966	171	150	-	-
					-			

IL DIRETTORE DI LABORATORIO

Sperime

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CSP_16/0395-05

DATA EMISSIONE:

10/11/2016

Pagina 6 di 7

ONDA	GGIO :	S 2	CAMPIC	NE: CI	-3	PF	ROFOND	ITA':	12.00	÷	12.50	m
					PROV							
ettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (1	۷)			
1	0.017	10	51	2.248	122	101	9.125	178				
2	0.040	22	52	2.322	124	102	9.285	179				
3	0.083	30	53	2.414	127	103	9.462	180				
4	0.113	34	54	2.496	127	104	9.626	180				
5	0.141	38	55	2.598	128	105	9.796	181				
6	0.174	42	56	2.660	129	106	10.003	181				
7	0.201	45	57	2.742	130	107	10.124	182				
8	0.244	48	58	2.828	131	108	10.628	183				
9	0.273	50	59	2.905	132	109	11.124	184				
10	0.305	53	60	2.986	133	110	11.621	184				
11	0.339	55	61	3.072	134	111	12.158	185				
12	0.365	57	62	3.147	135	112	12.601	186				
13	0.404	60	63	3.233	136	113	13.103	188				
14	0.433	61	64	3.316	137	114	13.590	189				
15	0.468	64	65	3.392	138	115	14.096	191				
16	0.496	66	66	3.503	139	116	14.613	192				
17	0.533	67	67	3.567	140	117	15.094	194				
18	0.566	70	68	3.651	141	118	15.599	194				
19	0.598	71	69	3.821	143	119	16.085	196				
20	0.627	73	70	3.981	145	120	16.595	197				
21	0.661	75 75	71	4.147	145	121	10.595	197				
22	0.688	76	72	4.312	148	122	-	-				
23	0.732	77	73	4.489	150	123		-				
24	0.763	77 79	74	4.469	150	124	-	-				
25		80	75			125	-	-				
26	0.791 0.821	82	76	4.820	152	126	-	-				
27			77	4.978	153	127	-	-				
28	0.862	83	78	5.173	154	128	-	-				
29	0.894	85	79	5.322	155	129	-	-				
30	0.930	86	80	5.474	156	130	=	-				
31	0.958	88		5.656	157	131	-	-				
32	0.991	89	81	5.807	158		-	=				
33	1.021	90	82	5.978	159	132	Ξ.	=				
	1.063	91	83	6.149	160	133	-					
34 35	1.094	92	84	6.312	161	134	-	-				
36	1.124	93	85	6.484	162	135	-	-				
37	1.153	95	86	6.648	163	136	-	_				
	1.199	96	87	6.812	164	137	-	-				
38	1.232	98	88	6.977	165	138	-	-				
39	1.257	100	89	7.142	166	139	=	Ξ.				
40	1.343	102	90	7.310	167	140	-	-				
41	1.422	104	91	7.469	168	141	-	=				
42	1.502	106	92	7.643	169	142	-	-				
43	1.587	108	93	7.803	170	143	×	-			NERGEA	
44	1.665	109	94	7.963	171	144	·	-		19	,(1
45	1.748	110	95	8.152	172	145	-	-		15	AUTODIT	5
46	1.830	112	96	8.288	173	146	-			8	AUTORIZZATO SETTORE "a"	0 '
47	1.920	114	97	8.459	174	147	4	-		IC) UIL	(1) 0-115 2"	. 0
48	2.001	116	98	8.670	175	148	-	-		\Z "	° 7618/STC	0 5
49	2.080	118	99	8.787	176	149	-	-		10),	6
50	2.167	120	100	8.959	177	150	-	-			O GEO	
										1		
										11/		

40057 Grana olo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CSP_16/0395-05

DATA EMISSIONE:

10/11/2016

Pagina 7 di 7

PROVA	TOIA	COLAI		
PRUMA		SSIAI		

ASTM D 2850

SONDAGGIO: S2 CAMPIONE: CI-3 PROFONDITA': 12.00 ÷ 12.50 m

						PROV	INO 3			
	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	
	1	0.018	15	51	2.264	134	101	9.143	173	
	2	0.043	23	52	2.351	135	102	9.309	173	
	3	0.073	30	53	2.432	136	103	9.470	174	
Srl	4	0.108	35	54	2.521	137	104	9.617	175	
GEA	5	0.150	39	55	2.626	138	105	9.783	175	
ER	6	0.177	43	56	2.688	139	106	9.978	176	
SIN	7	0.215	47	57	2.767	139	107	10.128	176	
	8	0.243	50	58	2.859	142	108	10.623	177	
A DE	9	0.274	53	59	2.944	141	109	11.125	177	
Ë	10	0.311	55	60	3.014	141	110	11.628	179	
SCF	11	0.347	58	61	3.090	144	111	12.157	180	
N.	12	0.375	61	62	3.189	143	112	12.629	182	
ZZIC	13	0.406	63	63	3.288	143	113	13.139	184	
122	14	0.433	65	64	3.349	144	114	13.623	185	
TOR	15	0.472	68	65	3.419	145	115	14.126	187	
AU.	16	0.502	70	66	3.517	145	116	14.631	188	
AL	17	0.542	72	67	3.594	146	117	15.181	189	
ENZ	18	0.573	74	68	3.675	146	118	15.607	191	
/A S	19	0.604	76	69	3.842	147	119	16.113	193	
80	20	0.638	78	70	3.993	150	120	16.614	195	
P P	21	0.671	80	71	4.168	149	121	-	-	
2	22	0.703	82	72	4.339	151	122	-	-	
SOR	23	0.738	85	73	4.496	152	123	-	-	
3AP	24	0.767	85	74	4.698	153	124	-	-	
Ш	25	0.805	87	75 70	4.836	154	125		-	
SEN	26	0.831	89	76 77	4.997	155	126	-	×	
REG	27	0.864	91	77	5.179	156	127	-	-	
	28 29	0.895	92	78	5.330	157	128	-	-	
H D	30	0.928	96	79 80	5.487	158	129 130	-	-	
TAI	31	0.952	95 97	81	5.644	159 160	131	-		
E 10	32	0.998 1.030	97	82	5.820	161	132	-	-	
ON	33	1.050	100	83	5.989 6.151	162	133	-	-	
ZNC	34	1.039	100	84	6.316	162	134	-		_
È VIETATA LA RIPROD <mark>UZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SA</mark> I	35	1.132	105	85	6.483	163	135			
R	36	1.162	104	86	6.644	164	136			
A LA	37	1.199	106	87	6.823	165	137	_		
TAT,	38	1.227	107	88	6.992	166	138	_		
NE.	39	1.256	108	89	7.162	167	139	_		
·Ш	40	1.348	113	90	7.327	166	140	_	_	
	41	1.416	114	91	7.493	167	141	-	_	
	42	1.530	117	92	7.662	168	142	-	-	
	43	1.582	119	93	7.826	168	143			/
	44	1.673	122	94	7.992	168	144	-	_	1
	45	1.753	126	95	8.160	169	145	_	_	BO
	46	1.848	125	96	8.312	169	146	-	-	ABORA
	47	1.930	127	97	8.485	170	147	H	-	1
	48	2.015	129	98	8.667	171	148	-	_	1
	49	2.105	130	99	8.817	171	149	_	-	
	50	2.183	134	100	8.975	172	150	-	-	

AUTORIZZATO OD SETTORE "a" OD NO GEOVERNO GEOVER

IL DIRETTORE DI MABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

PROVA TRIASSIALE UU (ASTM D 2850) - INTERPOLAZIONE DATI

COMMITTENTE:

SPEA Engineering spa

Pagina 1 di 1

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

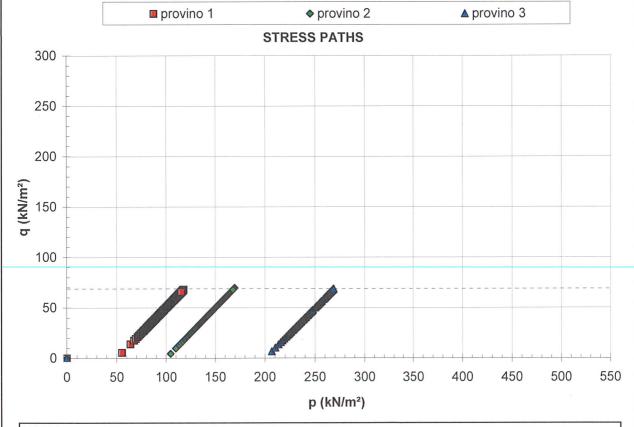
DATA EMISSIONE: 10/11/2016

SONDAGGIO:

S 2

CAMPIONE:

CI-3


PROFONDITA': da m 12.00

a m

12.50

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Intercetta sull' asse y	Inclinazione retta
Risultati della regressione lineare	(kN/m²)	(°sess.)
	68.77	0.00
Interpretazione	eseguita su tre provini, imponendo f=0)

NOTE:

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 10/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0396 **CSP**

DATA ACCETTAZIONE:

05/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

CAMPIONE: CI-4

PROFONDITA' (m):

19.00-19.50

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

	CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA	
ı	DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP16/0396-01	
	LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP16/0396-02	
	TRX01a.1	Prova triassiale UU, eseguita su tre provini, compresa saturazione	1	ASTM D 2850	CSP 16/0396-03	
						,

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP 16/0396-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0396 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-4 Profondità: 19.00

19.50

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

21/10/2016

DATA TERMINE PROVA:

21/10/2016

TIMBRO BLU SULL' ORIGINALE

CPR_001 (Rev. 1 del 04/05)

SPERIMENTATORE Dott. Enrico BERTQCCHI

Il Direttore di Laboratorio Dott. Geol. Dario/GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

File: CPR 001 DSC.xls

Sistema Qualità SINERGEA srl

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0396-01

DATA EMISSIONE

10/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-4

PROFONDITA':

19.00 ÷

19.50 **m**

Data descrizione

21/10/16

Forma del campione

cilindrica

Qualità del campione (AGI):

Q.5.

Dimensioni del campione

: L = 53 cm; $\phi = 8.4 \text{ cm}$

PIOIC	ondità				Descrizione
da m	a m				
18.97	19.14	campione rin	naneggiato)	
19.14	19.50	L A S / L con Presenza di			6/) e concrezioni calcarei, mica.
		Forte reazion	ne a contat	to con HC	5%.
LEGENDA	: A = A	Argilla/Argilloso	L =	Limo/Limos	s = Sabbia/Sabbioso T = Torba/Torboso
	Per i col				Charts" (sigla tra parentesi)
SCHE	Pericol ⊥ = p	ori si fa riferiment perpendicolare all	'asse del ca	ell Soil Color mpione	Charts" (sigla tra parentesi) = parallelo all'asse del campione
Prof. Nom	Per i col ⊥ = r MA DEL CA	ori si fa riferiment perpendicolare all		ell Soil Colo	Charts" (sigla tra parentesi)
	Per i col ⊥ = r MA DEL CA	ori si fa riferiment perpendicolare all AMPIONE rofondità reale	'asse del ca P.P.	ell Soil Color mpione T.V.	Charts" (sigla tra parentesi) = parallelo all'asse del campione
Prof. Nom	Per i col ⊥ = r MA DEL CA	ori si fa riferiment perpendicolare all AMPIONE rofondità reale	'asse del ca P.P.	ell Soil Color mpione T.V.	Charts" (sigla tra parentesi) = parallelo all'asse del campione
Prof. Nom (m)	Per i col ⊥ = r MA DEL CA	ori si fa riferiment perpendicolare all AMPIONE rofondità reale (m)	'asse del ca P.P.	ell Soil Color mpione T.V.	Charts" (sigla tra parentesi) = parallelo all'asse del campione
Prof. Nom (m)	Per i col ⊥ = r MA DEL CA	ori si fa riferiment perpendicolare all AMPIONE rofondità reale (m)	'asse del ca P.P.	ell Soil Color mpione T.V.	Charts" (sigla tra parentesi) = parallelo all'asse del campione
Prof. Nom (m)	Per i col ⊥ = r MA DEL CA	ori si fa riferiment perpendicolare all AMPIONE rofondità reale (m)	'asse del ca P.P.	ell Soil Color mpione T.V.	Charts" (sigla tra parentesi) = parallelo all'asse del campione

⊥ = perpendicolare all'a					asse del cai					
Г	SCHEMA DEL CAMPIONE			P.P.	T.V.	PROVE ESEGUITE				
	Prof. Nominale Profondità reale (m) (m)			(MPa)	(MPa)					
				(,	,					
\parallel	(111)			(111)						
	19.00			18.97						
				19.14			·			
				10.11						
					0.21 ⊥		CNW, MVT, TUU pr 3			
					0.26 ⊥		CNW, MVT, TUU pr 2			
					0.18 ⊥		CNW, MVT, TUU pr 1			
	19.50			19.50	0.24 ⊥					

LEGENDA:

MVT

CNW = contenuto in acqua massa volumica

il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova

DIRETTORE DI ABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Interore Efel +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0396-01

DATA EMISSIONE:

10/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2

CAMPIONE: CI-4

PROFONDITA':

19.00

19.50

m

COMMESSA: 16/126 SONDAGGIO: S2 CAMPIONE: C14 È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL PROFONDITA: 19,00 : 199 DUTO

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR_001_DSC.xls

Sistema Qualità SINERGEA srl

CPR_001 (Rev. 1 del 04/05)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0396-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0396 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE :

05/10/16

DATA DI EMISSIONE:

10/11/16

Profondità:

fustella di acciaio

Sondaggio:

S 2

DESCRIZIONE CONTENITORE DEL CAMPIONE:

CI-4

19.00 -

19.50

m

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: Dott. Andrea MASTRANGELO

Campione:

DATI FORNITI da:

Comittenza

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

09/11/16

DATA TERMINE PROVA:

10/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

File: CPR_008_LIM.xls

Sistema Qualità SINERGEA srl

CPR_008 (Rev. 1 del 04/05)

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0396-02

DATA EMISSIONE:

10/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

- ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZIÓNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

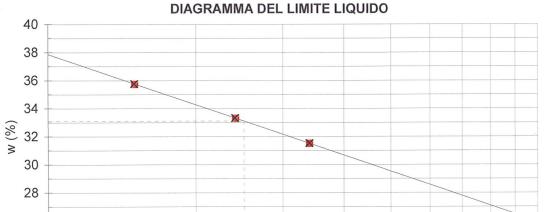
26

24

10

S 2

CAMPIONE:


CI-4

PROFONDITA':

19.00 ÷ 19.50 m

100

Profondità provino	m		19.21	-19.50	
Determinazione	n°	1	2	3	4
Massa tara	g	33.7121	41.5385	52.4860	-
Numero colpi	-	15	24	34	-
Massa provino umido + tara	g	68.5138	74.0012	87.2533	-
Massa provino secco + tara	g	59.3474	65.8890	78.9221	-
Contenuto in acqua	%	35.8	33.3	31.5	-
Limite Liquido w _∟	%		3	3	

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	14.0312	13.4174	-	-
Massa provino umido + tara	g	16.3512	15.272	-	-
Massa provino secco + tara	g	15.9607	14.9669	-	-
Contenuto in acqua	%	20.2	19.7	-	-
Limite Plastico w _P	%		2	0	

25

	Indice di Plasticità (w _L - w _P)
I _P	13

DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR_008_LIM.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0396-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0396_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

10/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

CI-4 Campione:

Profondità:

19.00

19.50

m

DATA PRELIEVO:

PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

È VIETATA LA RIPRODUZIONE

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
TUU	Prova triassiale non consolidata non drenata	3	ASTM D 2850

DATA INIZIO PROVA:

02/11/16

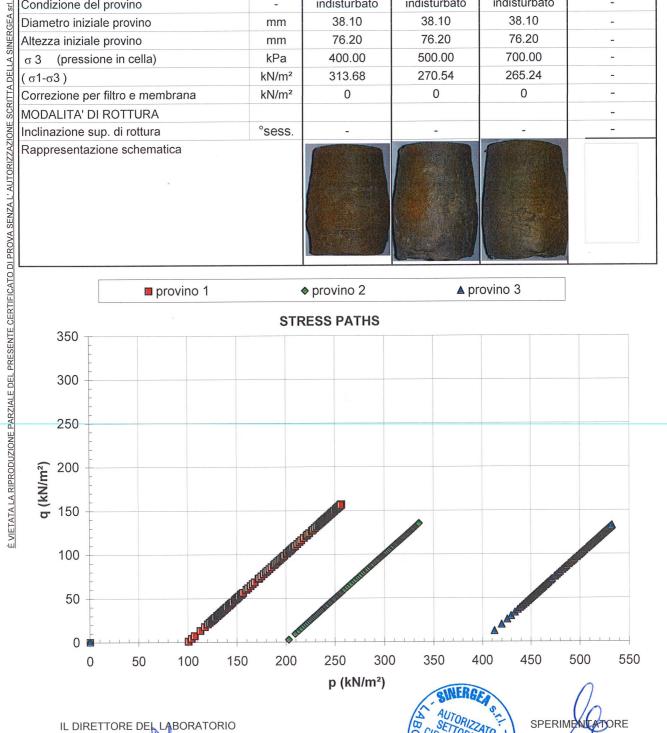
DATA TERMINE PROVA:

02/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCONI IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565


File: CPR_028_TUU.xls

CSP_16/0396-03

DATA EMISSIONE: 10/11/2016

Pagina 2 di 7

PROVA TRIASSIALE U.U.		ASTM D 2850							
SONDAGGIO : S2 CA	AMPIONE	: CI-4	PROFONDITA':	19.00	÷ 19.50	m			
PROVINO	n°	1	2	3	-				
Profondità provino	da m	19.41	19.32	19.23	-				
Profondità provino	a m	19.50	19.41	19.32	-				
Condizione del provino	-	indisturbato	indisturbato	indisturbato	-				
Diametro iniziale provino	mm	38.10	38.10	38.10	-				
Altezza iniziale provino	mm	76.20	76.20	76.20	-				
σ 3 (pressione in cella)	kPa	400.00	500.00	700.00	-				
(\sigma1-\sigma3)	kN/m²	313.68	270.54	265.24	-				
Correzione per filtro e membrana	kN/m²	0	0	0	-				
MODALITA' DI ROTTURA					-				
Inclinazione sup. di rottura	°sess.	-	-	-					
Condizione del provino Diametro iniziale provino Altezza iniziale provino σ 3 (pressione in cella) (σ1-σ3) Correzione per filtro e membrana MODALITA' DI ROTTURA Inclinazione sup. di rottura Rappresentazione schematica									

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Te CPR_028 (Rev. 2 del 06/09) File : CPR_028_TUU.xls

Fax +39 0516058949 Sistema Qualità SINERGEA srl

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0396-03

DATA EMISSIONE:

10/11/2016

Pagina 3 di 7

PROVA TRIASSIALE U.U.

ASTM D 2850

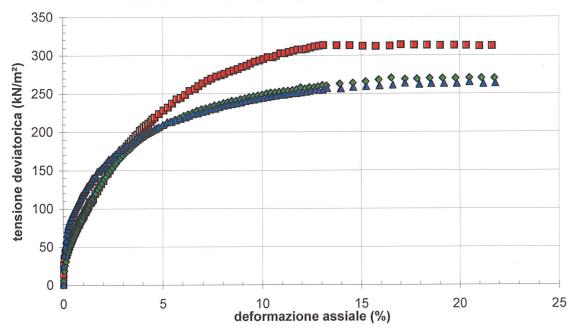
SONDAGGIO

S 2

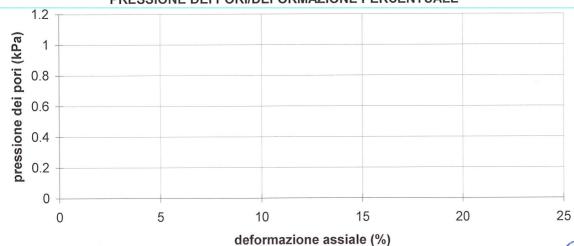
CAMPIONE

PROFONDITA': CI-4

19.00


19.50 m

provino 1


provino 2

△ provino 3

TENSIONE DEVIATORICA/DEFORMAZIONE ASSIALE

PRESSIONE DEI PORI/DEFORMAZIONE PERCENTUALE

IL DIRETTORE DEL LABORATORIO

SPERIME

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Te

Sistema Qualità SINERGEA srl

Fax +39 0516058949

È VIETATA I A RIPRODI IZIONE PARZIAI E OFFI PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0396-03

DATA EMISSIONE: 10/11/2016

Pagina 4 di 7

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

S 2

CAMPIONE :

CI-4

PROFONDITA':

19.00 ÷

19.50 m

	PROVINO	n°	1	2	3	-
Srl.	Profondità provino	da m	19.41	19.32	19.23	-
GEA	Profondità provino	a m	19.50	19.41	19.32	-
NER	Condizione del provino	-	indisturbato	indisturbato	indisturbato	-
AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri	Diametro iniziale provino	mm	38.10	38.10	38.10	-
DELL	Altezza iniziale provino	mm	76.20	76.20	76.20	-
ATT	INIZIO PROVA					
SCRI	Peso dell'unità di volume	kN/m³	19.21	19.23	19.27	-
NE (Riferimento					
AZIC	Contenuto in acqua iniziale	%	25.75	26.04	25.69	-
RIZZ	Riferimento					
UTO	Peso un. volume secco iniziale	kN/m³	15.27	15.26	15.33	-
AL.A	Peso sp. dei grani (assunto)	-	2.750	2.750	2.75	-
ENZ/	Riferimento					
VA SI	Indice dei vuoti iniziale	-	0.762	0.764	0.756	. E
È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'	Grado di saturazione iniziale	%	92.70	93.53	93.33	-
DIF	FASE DI SATURAZIONE					
CATC	Pressione pori iniziale	kPa				-
TIF	Valore di B iniziale	-				-
CER	Pressione pori a saturazione	kPa				-
NTE	Pressione in cella finale	kPa				-
RESE	Valore di B a saturazione	-				-
EL PF	FASE DI COMPRESSIONE					
EDE	Pressione in cella	kPa	400	500	700	-
ZZIAI	Pressione pori iniziale	kPa	350	447	643	-
PAF	σ' ₃	kPa	0	55	60	-
IONE	Velocità pressa	mm/min	1.0000	1.0000	1.0000	-
ZNO	CONDIZIONI A ROTTURA					
IPRC	Deformaz. assiale percentuale	%	17.02	16.51	20.50	1-
LAR	$(\sigma_1 - \sigma_3)$	kN/m²	313.68	270.54	265.24	-
ATA	Correzione per filtro e membrana	kN/m²	0	0	0	-
/IET,	p a rottura	kN/m²	256.84	335.27	532.62	-
·Ш	q a rottura	kN/m²	156.84	135.27	132.62	-
	FINE PROVA					
	Peso dell'unità di volume finale	kN/m³	19.59	19.56	19.62	-
	Contenuto in acqua finale	%	25.87	26.50	26.50	-
	Peso un. volume secco finale	kN/m³	15.56	15.46	15.51	-
	Indice dei vuoti finale	-	0.730	0.741	0.736	SINE
	Grado di saturazione finale	%	97.31	98.13	98.83	AUTOS
					(h	O CIRCITOR

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

CERTIFICATO n°

È VIETATA LA RIPRODUZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

CSP_16/0396-03

DATA EMISSIONE:

10/11/2016

Pagina 5 di 7

PROVA TRIASSIALE U.U.	ASTM D 2850

CAMPIONE: CI-4 PROFONDITA': 19.00 19.50 m SONDAGGIO: S2

						PROV	INO 1			
	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	
	1	טרו (וווווו)		51	2.125	192	101	8.992	390	
	2	0.002	9	52	2.123	197	102	9.164	391	
	3	0.002	16	53	2.190	203	103	9.324	393	
	4			54	2.369	206	104	9.491	396	
	5	0.015	29	55	2.443	210	105	9.657	399	
	6	0.043	39	56	2.443	214	106	9.827	401	
	7	0.081	46	57	2.523	218	107	9.984	403	
	8	0.105	50	58	2.696	222	108	10.495	406	
	9	0.138	54 57	59	2.783	226	109	10.493	400	
	10	0.165	57	60	2.763	229	110	11.490	411	
	11	0.200	60	61	2.952	235	111	11.490	414	
		0.233	63	62			112	12.529	414	
	12	0.268	67		3.020	237	113			
	13	0.306	68	63 64	3.101	241	113	12.968	423	
	14	0.338	71	64 65	3.187	244	114	13.484	426	
	15	0.368	74	65 66	3.277	247		13.988	429	
	16	0.394	76	66 67	3.366	250	116	14.489	432	
	17	0.443	78	67	3.429	254	117	15.028	436	
	18	0.473	81	68	3.519	257	118	15.492	439	
	19	0.505	83	69	3.685	263	119	16.004	442	
	20	0.529	85	70	3.855	269	120	16.493	446	
	21	0.568	88	71	4.028	274	121	-	-	
	22	0.607	90	72	4.184	281	122	-	-	
	23	0.630	94	73	4.356	288	123	-	-	
	24	0.656	95	74	4.511	291	124	-	-	
	25	0.684	97	75	4.674	296	125	-	-	
	26	0.723	99	76	4.838	303	126	-	-	
	27	0.757	101	77	5.045	307	127	=	-	
	28	0.782	103	78	5.173	312	128	-	-	
	29	0.822	108	79	5.334	317	129	-	-	
	30	0.849	108	80	5.530	322	130	1-	-	
	31	0.877	111	81	5.669	326	131	-	-	
	32	0.907	113	82	5.856	330	132	1-	-	
L	33	0.940	115	83	6.030	333	133	-	-	
	34	0.975	118	84	6.163	336	134	-	-	
	35	1.009	123	85	6.347	340	135	-	-	
	36	1.047	122	86	6.521	343	136	-	-	
	37	1.072	124	87	6.682	346	137	-	-	
	38	1.112	126	88	6.838	350	138	-	-	
	39	1.146	128	89	7.022	353	139	-	-	
I	40	1.228	136	90	7.166	357	140	-	=	
	41	1.312	140	91	7.338	361	141	-	-	011
	42	1.381	146	92	7.518	364	142		-	318
	43	1.461	151	93	7.668	367	143	-1	-	AUT SET
	44	1.551	156	94	7.829	371	144	-	-	AUTO GOOD OF THE CONTROL OF THE CONT
	45	1.620	165	95	8.030	372	145	-	-	P 10.00
	46	1.712	167	96	8.160	375	146	_	-	13 67
	47	1.792	172	97	8.325	380	147	-	-	PIO
	48	1.880	178	98	8.489	381	148	-	.=.	G
	49	1.963	183	99	8.657	384	149	_	-	
	50	2.020	103	100	9 929	387	150			

IL DIRETTORE DI LABORATORIO

187

2.039

100

50

Sperime

40057 Granaro o dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

150

387

8.828

CERTIFICATO n°

CSP_16/0396-03

DATA EMISSIONE:

10/11/2016

Pagina 6 di 7

PROVA TRIASSIALE U.U.	ASTM D 2850

CAMPIONE: CI-4 PROFONDITA': 19.00 19.50 m **SONDAGGIO** : S2

DE	२०	/11	-	2
Ph	< ()	vin	1()	_

						PROV	INO 2			
	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	
	1	0.001	6	51	2.214	193	101	9.092	330	
	2	0.033	21	52	2.300	197	102	9.269	329	
- 1	3	0.059	29	53	2.385	201	103	9.432	332	
A Srl	4	0.098	35	54	2.469	204	104	9.608	333	
GE/	5	0.129	41	55	2.566	207	105	9.759	335	
Ä	6	0.160	45	56	2.637	211	106	9.933	338	
A SII	7	0.191	49	57	2.721	214	107	10.087	338	
	8	0.221	53	58	2.804	217	108	10.593	344	
A D	9	0.258	57	59	2.883	220	109	11.100	348	
Ħ	10	0.285	60	60	2.969	223	110	11.586	353	
SCF	11	0.321	63	61	3.053	226	111	12.085	359	
N.	12	0.350	66	62	3.135	228	112	12.571	365	
ZIC	13	0.378	69	63	3.212	231	113	13.106	366	
177	14	0.421	72	64	3.296	233	114	13.568	369	
OR	15	0.454	75	65	3.384	235	115	14.065	373	
AU	16	0.481	78	66	3.462	237	116	14.559	376	
A L.	17	0.515	81	67	3.554	240	117	15.059	379	
ZNZ	18	0.541	84	68	3.626	242	118	15.595	383	
ASE	19	0.584	87	69	3.804	246	119	16.061	386	
Š	20	0.617	90	70	3.955	250	120	16.558	389	
P	21	0.644	92	71	4.115	254	121	-	-	
0	22	0.671	95	72	4.291	258	122	-	-	
OR.	23	0.709	97	73	4.456	261	123		-	
APP	24	0.743	101	74	4.619	265	124	-		
E S	25	0.782	103	75	4.776	268	125	-	-	
EN	26	0.811	106	76	4.945	271	126		-	
SES	27	0.845	109	77	5.109	275	127	-	-	
L	28	0.872	111	78	5.278	278	128	-	-	
DE	29	0.915	113	79	5.445	280	129	-	-	
ALE	30	0.946	116	80	5.617	283	130	-	-	
101	31	0.974	119	81	5.778	286	131	-	-	
N.	32	1.004	121	82	5.956	288	132	-	-	
JZIC	33	1.044	124	83	6.121	291	133	-	-	
ETATA LA RIPRODUZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA srI	34	1.082	126	84	6.284	293	134	-	-	
RIPR	35	1.107	128	85	6.437	296	135	-	-	
A	36	1.137	130	86	6.609	297	136	-	-	
TAI	37	1.175	133	87	6.776	300	137	-	-	
ETA	38	1.206	135	88	6.942	302	138	~	-	
ĒΖ	39	1.237	137	89	7.105	305	139	-	-	
	40	1.316	143	90	7.274	307	140	-	-	
	41	1.396	148	91	7.444	309	141	-	~	
	42	1.477	153	92	7.608	311	142	-	-	
	43	1.559	159	93	7.773	314	143	-	-	811
	44	1.649	163	94	7.936	316	144	-	-	
	45	1.733	169	95	8.104	317	145	-	-	AUT AUT
	46	1.811	173	96	8.264	319	146	-	-	BORATO ATO
	47	1.895	177	97	8.430	321	147	-	-	\Z 10.761
	48	1.978	182	98	8.603	322	148	-	-	100
	49	2.051	186	99	8.771	324	149	-	-	WO C
	50	2 120	100	100	8 038	326	150			

IL DIRETTORE DI LABORATORIO

190

2.139

entatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

150

50

326

8.938

CERTIFICATO n°

CSP_16/0396-03

DATA EMISSIONE:

10/11/2016

Pagina 7 di 7

											Pagina 7	di 7
ROVA	TRIASSI	ALE U.U.					AS	STM D 2	2850			
ONDA	GGIO :	S 2	CAMPIC	NE: CI	-4	PF	ROFOND	ITA':	19.00	÷	19.50	m
		120			PROV	'INO 3						
ettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (1	N)			
1	0.005	28	51	2.240	206	101	9.118	323				
2	0.039	45	52	2.330	209	102	9.305	325				
3	0.079	58	53	2.402	213	103	9.444	327				
4	0.109	67	54	2.489	214	104	9.615	330				
5	0.139	76	55	2.607	217	105	9.775	330				
6	0.170	83	56	2.662	219	106	9.938	331				
7	0.196	88	57	2.734	222	107	10.097	335				
8	0.231	92	58	2.815	227	108	10.630	337				
9	0.264	96	59	2.911	227	109	11.101	342				
10	0.303	100	60	2.989	229	110	11.595	346				
11	0.334	102	61	3.074	233	111	12.099	350				
12	0.368	102	62	3.154	233	112	12.618	354				
13	0.400	108	63	3.233	235	113	13.099	360				
14	0.433	111	64	3.316	237	114	13.646	361				
15	0.464	114	65	3.398	239	115	14.108	365				
16			66			116	14.601	368				
	0.496	117		3.499	241	117						
17	0.531	120	67	3.570	243		15.091	371				
18	0.563	122	68	3.658	245	118	15.586	377				
19	0.581	123	69 70	3.823	249	119	16.120	377				
20	0.615	126	70	3.987	254	120	16.576	381				
21	0.645	128	71	4.147	255	121	-	-				
22	0.679	131	72	4.319	258	122	-	-				
23	0.706	134	73	4.494	261	123	-	-				
24	0.745	135	74	4.684	264	124	-	-				
25	0.780	138	75	4.809	267	125	-					
26	0.808	140	76	4.970	270	126	-	-				
27	0.843	142	77	5.153	272	127	-	-1				
28	0.876	144	78	5.314	275	128	-	-				
29	0.913	148	79	5.457	277	129	-	-				
30	0.949	148	80	5.625	280	130	-	-				
31	0.976	150	81	5.801	282	131	-					
32	1.005	152	82	5.964	285	132	-	-				
33	1.050	154	83	6.130	288	133	-	-				
34	1.084	156	84	6.284	290	134	-	-				
35	1.110	160	85	6.454	292	135	-					
36	1.135	160	86	6.625	294	136	-	-				
37	1.166	161	87	6.794	296	137	-	-				
38	1.214	163	88	6.966	299	138	-	-				
39	1.243	165	89	7.119	301	139	-	-				
40	1.314	171	90	7.302	303	140	-	-				
41	1.403	173	91	7.447	305	141	-	-				
42	1.487	177	92	7.622	307	142	-	-				
43	1.583	181	93	7.794	309	143	-	-			SIN	RGE
44	1.655	185	94	7.962	311	144	-	-			AllTo	
45	1.745	190	95	8.126	313	145	-	-			O CUSETT	RIZZAT
46	1.832	191	96	8.296	315	146	-	-			B COR	HE "
47	1.913	195	97	8.461	316	147	-	-			1618	15/201
48	1.993	198	98	8.621	318	148	-	_			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	OIC
49	2.078	201	99	8.785	320	149	-	-			BORNO PHO GE	OTE
50	2.153	206	100	8.949	321	150	-	_				

IL DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

PROVA TRIASSIALE UU (ASTM D 2850) - INTERPOLAZIONE DATI

COMMITTENTE:

SPEA Engineering spa

Pagina 1 di 1

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

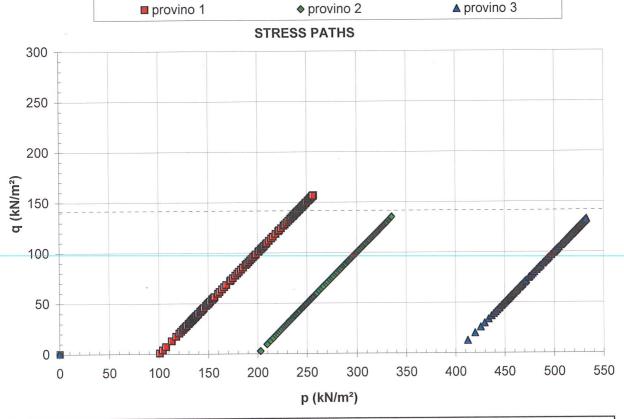
DATA EMISSIONE:

10/11/2016

SONDAGGIO:

S 2

CI-4 CAMPIONE:


PROFONDITA': da m 19.00

a m

19.50

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Intercetta sull' asse y	Inclinazione retta				
Risultati della regressione lineare	(kN/m²)	(°sess.)				
	141.58	0.00				
Interpretazione eseguita su tre provini, imponendo f=0						

NOTE:			

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 14/11/2016

COMMESSA N°:

RICHIEDENTE:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0397

CSP

05/10/2016

DATA ACCETTAZIONE:

CONSEGNATARIO:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

CAMPIONE: CI-5

PROFONDITA' (m):

27.00-27.50

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E VIETATA LA RIPRODUZIONE PARZIALE DE PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	DI PROVA	
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0397-01	
GRT04	Granulometria combinata per vagliatura e sedimentazione	1	ASTM D 422	CSP 16/0397-02	
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0397-03	
TDR01a	Prova di taglio diretto, Consolidata Drenata (C.D.), eseguita su tre provini	1	ASTM D 3080	CSP 16/0397-04	
TRX01a	Prova triassiale UU, compresa saturazione del provino	2	ASTM D 2850	CSP 16/0397-05	

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

MOQ-024 (Rev. 4 del 12/2014)

CERTIFICATO

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP 16/0397-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0397_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA' :

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-5 Profondità: 27.00 -

27.50

m

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

27/10/2016

DATA TERMINE PROVA:

27/10/2016

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE ott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Qario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR_001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0397-01

DATA EMISSIONE

14/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

SONDAGGIO:

S 2

CAMPIONE:

CI-5

PROFONDITA':

27.00

27.50 **m**

Data descrizione

27/10/16

Forma del campione

cilindrica

Qualità del campione (AGI):

Dimensioni del campione

: L = 55 cm; $\phi = 8.4 \text{ cm}$ Q.5.

- ASTM D2488

	Profo	ndità	Descrizione
	da m	a m	
SEA srl.	26.95	27.10	campione rimaneggiato
SINER	27.10	27.22	AL / A con L
A DELLA	27.22	27.42	L con A / LA
SCRITT	27.42	27.50	L con SA / LSA
IONE			Campione di colore grigio verdastro (5G 5/1)
RIZZAZ			Presenza di calcinelli, numerosi clasti, veli e concrezioni calcarei, puntinature nerastre, mica e bioclasti
SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.			Medio/Forte reazione a contatto con HCI 5%.
SENZ	LECENDA	. A - A-	rille/Arrillege I = Lime/Limege C = Cobbie/Cobbiege T = Torbe/Torbege

LEGENDA

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA S

A = Argilla/Argilloso

= Limo/Limoso

= Sabbia/Sabbioso

G = Ghiaia/Ghiaioso

F = Fine

M = Medio

Grossolano

Per i colori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi)

perpendicolare all'asse del campione

= parallelo all'asse del campione

				asse del ca	= parallelo all'asse del campione			
SCH	IEMA DE	L CAMPI	ONE	P.P.	T.V.	PROVE ESEGUITE		
Prof N	ominale	Profond	ità reale	(MPa)	(MPa)			
1	0111111010			(۵)	(۵)			
(m)			(m)					
27.00			26.95					
			27.10	0.21 =				
				0.21				
				0.15 _		CNW, MVT, TDR GRA, LIM		
				0.14 _		CNW, MVT, TUU pr 1		
1				0.22 ⊥		CNW, MVT, TUU pr 2		
				0.22 ⊥		NORM		
27.50	ONIM		27.50	0.17 =				

LEGENDA:

CNW = contenuto in acqua = massa volumica

il significato degli altri codici è riportato sulla prima pagina dei certificati di prova

DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore Fel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0397-01

DATA EMISSIONE:

14/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2

CAMPIONE: CI-5

PROFONDITA':

27.00

27.50

m

DIRETTORE DILABORATORIO

File: CPR_001_DSC.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP 16/0397-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0397_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-5 Profondità: 27.00 -

27.50

m

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA:

28/10/2016

DATA TERMINE PROVA:

09/11/2016

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE ott. Enrico BER/TOCCHI

Il Direttore di Laboratorio Dario GRUNDLER Dott. Geo

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR 006 (Rev. 1 del 04/05)

File: CPR 006 GRA SED.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0397-02

DATA EMISSIONE:

14/11/2016

Pagina 2 di 2

ANALISI GRANULOMETRICA

ASTM D 422

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

S 2

CAMPIONE:

CI-5

PROFONDITA':

GHIAIA

27.00 ÷

27.50 m

А	NALISI PER	VAGLIATUF	RA	ANALISI PER SE	DIMENTAZIONE
massa provino - 352.81 g				massa provino 4	5.52 g
profondità p	provino 2	7.10 ÷ 2	7.22 m	profondità provino 2	7.10 ÷ 27.22 m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	750 - assunto
	mm	% in peso	% in peso	Riferimento: -	
1 1/2 "	38.1	-	_	eseguita sul passante a	l vaglio 200
1 "	25.4	100.00	0.00	40.011.01.0 7.01.11	1H
3/4 "	19.05	95.83	4.17	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI D
3/8 "	9.525	93.87	1.96	D (mm)	
5	4	93.21	0.66	0.05629	66.97
10	2	91.93	1.28	0.04064	62.24
20	0.85	89.50	2.43	0.02938	56.97
30	0.59	-	-	0.01906	50.66
40	0.42	88.48	1.02	0.01374	45.66
50	0.297	-	-	0.00924	40.40
80	0.177	86.38	2.10	0.00712	35.92
100	0.149	-	-	0.00513	30.40
140	0.105	81.60	4.78	0.00301	25.40
200	0.075	76.23	5.37	0.00124	20.13

SABBIA

LIMO CIOTTOLI **ARGILLA** Gross Fine Medio Gross Fine Media Gross Media 100.00 90.00 80.00 70.00 60.00 Passante (%) 50.00 40.00 30.00 20.00 10.00 0.00

Diametro dei granuli (mm)

0.1

DIRETTORE DILABORATORIO

100

10

0.001

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Interiore File: CPR_006_GRA_SEDXS

0.01

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0397-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0397_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE :

05/10/16

DATA DI EMISSIONE :

14/11/16

Sondaggio:

S 2

DESCRIZIONE CONTENITORE DEL CAMPIONE:

Campione: CI-5

Profondità:

fustella di acciaio

27.00 -

27.50 m

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

11/11/16

DATA TERMINE PROVA:

12/11/16

TIMBRO BLU SULL' ORIGI

SPERIMENTATORE Dott. Enrico BERTOCOHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0397-03

DATA EMISSIONE:

14/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

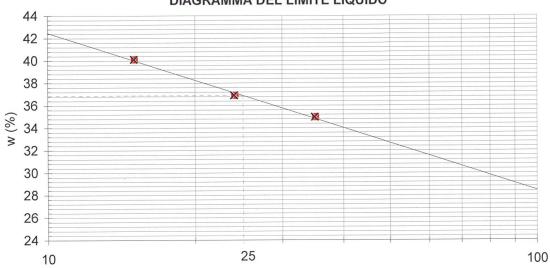
S 2

Limite Liquido W_L

CAMPIONE:

%

CI-5


PROFONDITA':

37

27.00 ÷ 27.50 m

Profondità provino	m		27.10-27.22				
Determinazione	n°	1	2	3	4		
Massa tara	g	33.7141	52.4854	43.4290	-		
Numero colpi	-	15	24	35	-		
Massa provino umido + tara	g	60.7929	86.6350	74.5266	-		
Massa provino secco + tara	g	53.0413	77.4304	66.4701	-		
Contenuto in acqua	%	40.1	36.9	35.0	-		

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	13.4176	13.918	-	-
Massa provino umido + tara	g	15.6903	15.9622	(- 1)	-
Massa provino secco + tara	g	15.2939	15.6148	-	-
Contenuto in acqua	%	21.1	20.5	-	-
Limite Plastico w _P % 21					

	Indice di Plasticità (w _L - w _P)
I _P	16

DIRETTORE DILABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR_008_LIM.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 16/0397-04

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0397 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO: Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

È VIETATA LA RIPRODUZIONE

S 2

Campione:

CI-5 Profondità: 27.00 - 27.50

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

il.				
	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
	TDR	Prova di taglio diretto CD	3	ASTM D 3080 / p.i.

DATA INIZIO PROVA:

27/10/16

DATA TERMINE PROVA:

05/11/16

TIMBRO BLU SULL' ORIGINA

SPERIMENTATORE Dott: Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €.10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0397-04

DATA EMISSIONE:

14/11/2016

Pagina 2 di 4

PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

S 2

CAMPIONE: CI-5

PROFONDITA':

27.00 ÷ 27.50 m

Provino	1	2	3	4	LEGENDA		LEGENDA
condizione	CR	CR	CR	-	CR	=	come ricevuto
Classe AGI	Q.5.	Q.5.	Q.5.	-	R T99	=	ricostruito AAHSTO T99
sezione	quadrata	quadrata	quadrata	quadrata	R T180	=	ricostruito AAHSTO T180
	36 cm ²	36 cm ²	36 cm ²	36 cm²	R	=	ricostruito come indicato in "Osservazioni"
z (m)	27.10-27.13	27.16-27.20	27.13-27.16	-	z	=	profondità del provino
h ₀ (mm)	20.00	20.00	20.00	-	h_0	=	altezza iniziale provino
w _i (%)	22.19	22.06	22.60	-	Wi	=	contenuto in acqua iniziale
Rifer. Certificato					W _f	=	contenuto in acqua a fine prova
γ (Mg/m³)	1.876	1.904	1.923	=	γ	=	massa volumica totale
Rifer. Certificato					γ _d	=	massa volumica provino secco
γ_d (Mg/m ³)	1.535	1.560	1.569	-	γs	=	massa volumica della parte solida
G _s (-) assunto	2.750	2.750	2.750	-	γ _w	=	massa volumica dell' acqua alla temperatura T°
Rifer. Certificato	-				Gs	=	peso specifico dei grani
γ_s (Mg/m ³)	2.745	2.745	2.745	-	Т	=	temperatura dell' acqua
T (°C)	20	20	20	-	е	=	indice dei vuoti
γ_w (Mg/m ³)	0.99823	0.99823	0.99823	-	n	=	porosità
e (-)	0.788	0.760	0.750	-	s	=	grado di saturazione
n (%)	44.08	43.19	42.86	-	σ_{v}	=	pressione verticale
S (%)	77.29	79.66	82.71	-	τ_{max}	=	massima tensione di taglio misurata
σ_v (kN/m ²)	98.1	196.1	392.3	-	$D_o \tau_{max}$	=	deformazione orizzontale alla massima tensione
τ _{max} (kN/m²)	65.6	121.2	227.5	-	τ_{r}	=	resistenza al taglio residua
$D_{o}\tau_{max}$ (mm)	2.15	2.23	5.21	-	D _{oc}	=	deformazione orizzontale cumulativa
h _{dc} (mm)	19.52	19.46	18.39	-	V_p	=	velocità avanzamento apparecchiatura - picco
t ₅₀ (min)			0.7	-	V _r	=	velocità avanzamento apparecchiatura - residuo
t _f stim. (min)			34	-	h _{dc}	=	altezza provino a fine consolidazione
v _p (mm/min)	0.005	0.005	0.005	-	t _f stim	=	tempo di rottura stimato
t _f eff. (min)	430	446	1042	-	t _f eff.	=	tempo di rottura effettivo
v _r (mm/min)	-	-	-	-			
τ_r (kN/m ²)	-	-	-	-			
D _{oc} (mm)	-	-	-	-			
W _f (%)	21.91	21.06	19.67	-			
Rifer. Certificato							

DIRETTORE DI LABORATORIO

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0397-04

DATA EMISSIONE:

14/11/2016

Pagina 3 di 4

PROVA DI TAGLIO DIRETTO C.D. **ASTM D3080 CAMPIONE:** CI-5 PROFONDITA': 27.00 ÷ 27.50 m SONDAGGIO: S 2 PICCO RESIDUO 82 81 È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI. 0 0.1 (E) 0.2 0.9 1 provino 1 △ provino 2 provino 3 □ provino 1 △ provino 2 ♦ provino 3 260 240 220 (kN/m²) 200 180 Tensione orizzontale 160 140 120 100 80 60 40 20 0 2 3 0 Deformazione orizzontale (mm) DIRETTORE DICABORATORIO SPERIMENTATORE

CSP_16/0397-04

DATA EMISSIONE:

14/11/2016

Pagina 4 di 4

PROVA DI TAGLIO DIRETTO C.D.

ASTM D3080

SONDAGGIO:

8

15

30

60

120

240

480

S 2

CAMPIONE:

CI-5

PROFONDITA':

27.00

÷ 27.50 m

kPa

DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96)

RELATIVI ALL' INTERVALLO DI PRESSIONE

196 da

kPa

392

PROVINO n. 3

PROFONDITA'

da 27.13 m a

27.16 m

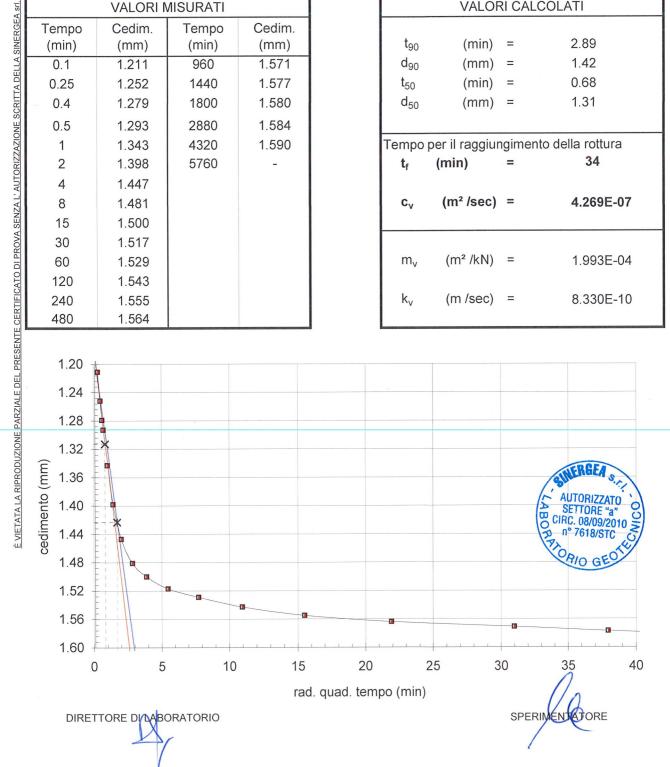
Sistema Qualità SINERGEA srl

		VALORI I	MISURATI	
OII FELLOCK	Tempo (min)	Cedim. (mm)	Tempo (min)	Cedim. (mm)
1	0.1	1.211	960	1.571
	0.25	1.252	1440	1.577
	- 0.4	1.279	1800	1.580
1	0.5	1.293	2880	1.584
	1	1.343	4320	1.590
	2	1.398	5760	-
	4	1.447		

1.481

1.500

1.517


1.529

1.543

1.555

1.564

VALORI CALCOLATI								
t ₉₀	(min)	=	2.89					
d ₉₀	(mm)	=	1.42					
t ₅₀	(min)	=	0.68					
d ₅₀	(mm)	=	1.31					
Tempo per il raggiungimento della rottura								
t _f	(min)	=	34					
c _v	(m² /sec)		4.269E-07					
m _v	(m² /kN)	=	1.993E-04					
k _v	(m /sec)	=	8.330E-10					

PROVA DI TAGLIO DIRETTO CD (ASTM D 3080) - INTERPOLAZIONE DATI

COMMITTENTE: SPEA Engineering spa

Pagina 1 di 1

LOCALITA':

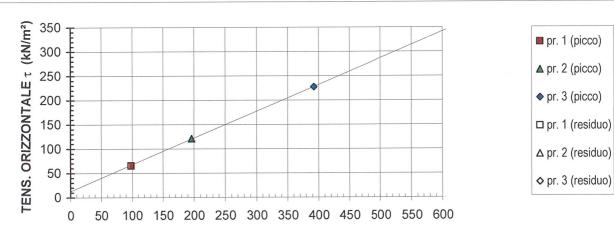
CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

SONDAGGIO:

S 2


CAMPIONE: CI-5

PROFONDITA':

27.00

27.50 m

TENSIONE VERTICALE σ_ν (kN/m²)

		Ris	ultati della r	egressione	lineare		
		Valori di p	icco	Valori residui			
Intercetta sull' asse y	=	12.45	kN/m²	=	-	kN/m²	
inclinazione retta	T =	28.77	° sess.	=	-	° sess.	

L'interpretazione sopra riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

NOTE:						

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0397-05

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0397_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO: Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-5

Profondità:

27.00 - 27.50

m

DATA PRELIEVO:

04/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
TUU	Prova triassiale non consolidata non drenata	2	ASTM D 2850

DATA INIZIO PROVA:

08/11/16

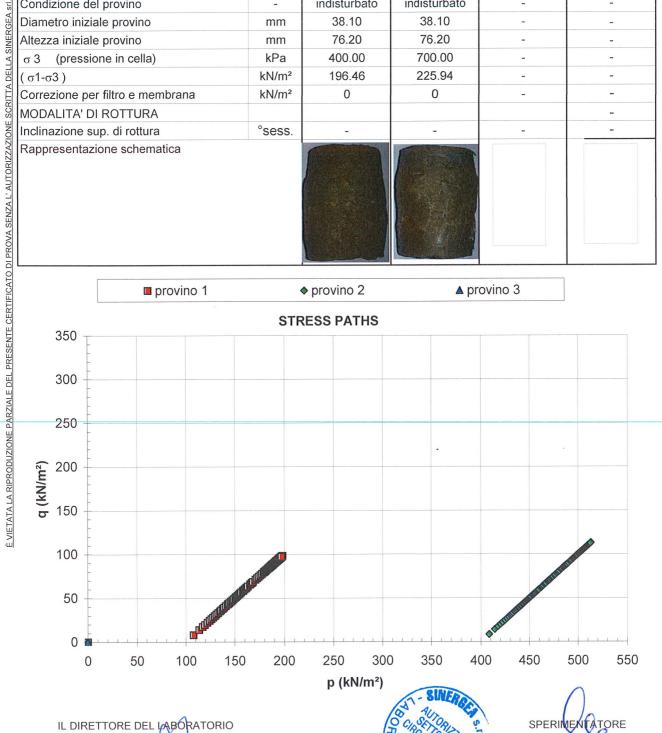
DATA TERMINE PROVA:

08/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI IL DIRETTORE DEL LABORATORIO Dott. Geol. Dafio GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565


File: CPR_028_TUU.xls

CSP_16/0397-05

DATA EMISSIONE: 14/11/2016

Pagina 2 di 6

PROVA TRIASSIALE U.U.		ASTM D 2850						
SONDAGGIO : S2	CAMPIONE	: CI-5	PROFONDITA':	27.00	÷ 27.50 r			
PROVINO	n°	1	2	-	-			
Profondità provino	da m	27.22	27.31	-	-			
Profondità provino	a m	27.31	27.40	-	-			
Condizione del provino	-	indisturbato	indisturbato	-	-			
Diametro iniziale provino	mm	38.10	38.10	-	-			
Altezza iniziale provino	mm	76.20	76.20	-	-			
σ 3 (pressione in cella)	kPa	400.00	700.00	-	-			
(σ 1- σ 3)	kN/m²	196.46	225.94	-	-			
Correzione per filtro e membrana	kN/m²	0	0	-	-			
MODALITA' DI ROTTURA					-			
Inclinazione sup. di rottura	°sess.	-	-	-				
Rappresentazione schematica								

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 CPR_028 (Rev. 2 del 06/09) File : CPR_028_TUU.xls

768869 - Fax +39 0516058949 Sistema Qualità SINERGEA srl

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0397-05

DATA EMISSIONE:

14/11/2016

Pagina 3 di 6

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

È VIETATA LA RIPRODI IZIONE PARZIALI FORI PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

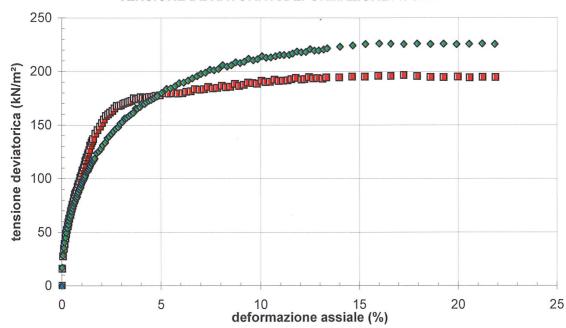
S 2

CAMPIONE

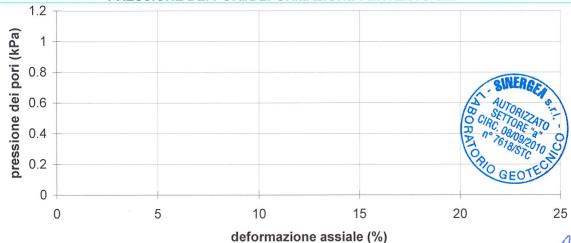
CI-5

PROFONDITA':

27.00


27.50 m

provino 1


provino 2

▲ provino 3

TENSIONE DEVIATORICA/DEFORMAZIONE ASSIALE

PRESSIONE DEI PORI/DEFORMAZIONE PERCENTUALE

IL DIRETTORE DE LABORATORIO

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CAMPIONE :

CI-5

CERTIFICATO n°

SONDAGGIO

CSP_16/0397-05

DATA EMISSIONE: 14/11/2016

ASTM D 2850

Pagina 4 di 6

PROVA TRIASSIALE U.U. S 2

PROFONDITA':

27.00 ÷ 27.50 m

PROVINO	n°	1	2	-	-
Profondità provino	da m	27.22	27.31	-	-
Profondità provino	a m	27.31	27.40	-	-
Condizione del provino	-	indisturbato	indisturbato	-	-
Diametro iniziale provino	mm	38.10	38.10	-	-
Altezza iniziale provino	mm	76.20	76.20	-	(=)
INIZIO PROVA					
Peso dell'unità di volume	kN/m³	19.38	19.70	-	-
Riferimento					
Contenuto in acqua iniziale	%	23.44	24.11	-	-
Riferimento					
Peso un. volume secco iniziale	kN/m³	15.70	15.87	-	-
Profondità provino Profondità provino Condizione del provino Diametro iniziale provino Altezza iniziale provino INIZIO PROVA Peso dell'unità di volume Riferimento Contenuto in acqua iniziale Riferimento Peso un. volume secco iniziale Peso sp. dei grani (assunto) Riferimento Indice dei vuoti iniziale Grado di saturazione iniziale FASE DI SATURAZIONE Pressione pori iniziale Valore di B iniziale Pressione pori a saturazione Pressione in cella finale Valore di B a saturazione FASE DI COMPRESSIONE Pressione pori iniziale Valore di B a saturazione FASE DI COMPRESSIONE Pressione pori iniziale o''3 Velocità pressa CONDIZIONI A ROTTURA Deformaz. assiale percentuale (\sigma_1^- \sigma_3) Correzione per filtro e membrana p a rottura	-	2.750	2.750	-	-
Riferimento					
Indice dei vuoti iniziale	_	0.715	0.696	-	·
Grado di saturazione iniziale	%	89.97	95.12	-	-
FASE DI SATURAZIONE					
Pressione pori iniziale	kPa				-
Valore di B iniziale	-				-
Pressione pori a saturazione	kPa				-
Pressione in cella finale	kPa				-
Valore di B a saturazione	-				-
FASE DI COMPRESSIONE					
Pressione in cella	kPa	400	700	-	-
Pressione pori iniziale	kPa	348	643	-	-
σ'3	kPa	52	59	-	-
Velocità pressa	mm/min	1.0000	1.0000	-	-
CONDIZIONI A ROTTURA					
Deformaz. assiale percentuale	%	17.26	15.99	-	-
$(\sigma_1 - \sigma_3)$	kN/m²	196.46	225.94	-	-
Correzione per filtro e membrana	kN/m²	0	0	-	OUNTE
p a rottura	kN/m²	198.23	512.97	- /	SHERGE
y a lottula	kN/m²	98.23	112.97	- /8	SCTOP
FINE PROVA				- ORAT	RC ORRE ATO
Peso dell'unità di volume finale	kN/m³	19.91	19.90	- 1	1618/85010
Contenuto in acqua finale	%	25.26	24.23	- 4	C C C
Peso un. volume secco finale	kN/m³	15.89	16.02	-	GEOTE
Indice dei vuoti finale	-	0.694	0.681	-	-
Grado di saturazione finale	%	99.94	97.69	_	-

IL DIRETTORE DEL ABORATORIO

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0397-05

DATA EMISSIONE:

14/11/2016

Pagina 5 di 6

0001/4	TOLAGOLA	1 25 11 11
PROVA	TRIASSIA	LE U.U.

ASTM D 2850

SONDAGGIO: S2 CAMPIONE: CI-5

PROFONDITA':

27.00 ÷

27.50

m

	SONDAG	3610 :	52	CAIVIPIO	INE: CI	-5	Pr	KOFUND	IIA.	27.00	-	27.50	111	
						PROV	INO 1							
	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (I	N)				
	1	0.017	18	51	2.186	195	101	9.168	247	,				
	2	0.051	31	52	2.266	196	102	9.285	248					
	3	0.085	39	53	2.361	198	103	9.454	251					
Srl.	4	0.111	44	54	2.432	199	104	9.623	250					
EA	5	0.111	50	55	2.527	200	105	9.781	251					
ERG	6	0.142	55	56	2.598	201	106	9.979	251					
SIN	7	0.188	59	57	2.678	202	107	10.123	253					
Y	8	0.100	63	58	2.764	205	108	10.622	255					
DEI	9	0.223	67	59	2.857	204	109	11.118	258					
H	10	0.284	71	60	2.939	205	110	11.609	260					
CR.	11	0.325	75	61	3.025	207	111	12.128	263					
ES	12	0.323	79	62	3.104	206	112	12.625	265					
NO.	13	0.383	82	63	3.219	207	113	13.118	268					
ZAZ	14	0.303	86	64	3.264	207	114	13.629	269					
RIZ	15	0.409	89	65	3.351	208	115	14.137	270					
OTO	16	0.443	93	66	3.442	208	116	14.636	272					
L' A	17	0.472	93 97	67	3.525	209	117	15.183	275					
ΙZΑ	18	0.542	99	68	3.523	210	118	15.640	276					
SEN	19		101	69	3.767	211	119	16.137	279					
Ϋ́	20	0.578		70	3.941	214	120	16.633	281					
PR _C	21	0.609	105	71	4.109	214	121	10.000	-					
	22	0.637	108	72	4.109	215	122	-	-					
37	23	0.677	111	73	4.454	215	123	-	-					
PO	24	0.712	115	74	4.434	216	124	-	-					
RAP	25	0.744	117	75	4.037	218	125	-	-					
핃	26	0.774	120	76	4.776	219	126	-	-					
SEN	27	0.796	123	77	5.102	219	127		-					
RE	28	0.843	126	78	5.102	222	128	-	-					
П	29	0.872	129	79	5.448	223	129	-	-					
Ш	30	0.896	133	80	5.606	226	130	-	-					
TAL	31	0.926	134	81	5.779	225	131	-	-					
2	32	0.949	137 140	82	5.779	226	132	-	-					
ONE	33	0.992	140	83	6.125	229	133	-	-					
È VIETATA LA RIPRODUZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI	34	1.021 1.054	145	84	6.287	228	134							
R	35	1.034	150	85	6.449	229	135	-	_					
RP	36	1.112	150	86	6.624	233	136	-						
P	37		153	87	6.782	233	137	-	-					
ATA		1.141		88		233	138	-	-					
IET,	38 39	1.169	155	89	6.956	236	139	-	-					
È V		1.200	157	90	7.119		140	-	-					
	40	1.284	163		7.285	236	141	-	-					
	41	1.371	167	91	7.455	236	141	-	-		SERE	EA		
	42	1.465	171	92	7.633	240		-	-	/6	Mar.			
	43	1.542	175	93	7.783	239	143	-	-	/;	ALITO	RIZZATO O	1	
	44	1.612	179	94	7.953	240	144	-	-	LA	SETT	RIZZATO O ORE "a" C 08/09/2010 Z	2	
	45	1.695	183	95	8.127	243	145	-	-	AB	CIRC.)8/09/2010 Z	5)	

IL DIRETTORE DI LABORATORIO

1.775

1.853

1.942

2.020

2.109

185

187

189

192

195

96

97

98

99

100

8.284

8.458

8.632

8.777

8.950

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

146

147

148

149

150

242

243

244

246

248

46

47

48

49

50

CSP_16/0397-05

DATA EMISSIONE:

14/11/2016

Pagina 6 di 6

PROVA	TRIA	SSIAL	E U.U.
--------------	------	-------	--------

ASTM D 2850

SONDAGGIO: S2 CAMPIONE: CI-5 PROFONDITA': 27.00 ÷ 27.50 m

SONDAC	GIO :	S 2	CAMPIO	NE: CI	-5	PF	ROFOND	ITA': 2	
					PROV	INO 2			
lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	
1	0.015	19	51	2.234	177	101	9.144	281	
2	0.051	32	52	2.321	179	102	9.319	282	
3	0.085	40	53	2.404	183	103	9.479	286	
4	0.111	46	54	2.486	184	104	9.647	285	
5	0.146	51	55	2.572	186	105	9.812	286	
6	0.174	56	56	2.650	188	106	10.003	288	
7	0.174	61	57	2.738	190	107	10.003	290	
8	0.252	65	58		195	108			
9		69	59	2.828		109	10.633	294	
10	0.279		60	2.897	195	110	11.122	298	
11	0.306	72 75	61	2.994	197		11.615	302	
12	0.341	75		3.075	201	111	12.140	305	
	0.378	79	62	3.172	201	112	12.604	307	
13	0.412	82	63	3.250	203	113	13.105	309	
14	0.440	85	64	3.336	205	114	13.611	312	
15	0.478	88	65	3.421	206	115	14.118	314	
16	0.503	90	66	3.529	208	116	14.613	317	
17	0.547	93	67	3.584	210	117	15.112	319	
18	0.579	95	68	3.673	211	118	15.594	322	
19	0.608	98	69	3.831	215	119	16.096	325	
20	0.636	100	70	4.008	220	120	16.582	327	
21	0.676	103	71	4.170	221	121	-	-	
22	0.714	105	72	4.338	224	122	-	-	
23	0.740	108	73	4.495	228	123	-	-	
24	0.766	110	74	4.665	229	124	-	-	
25	0.804	112	75	4.835	232	125	-	-	
26	0.840	114	76	4.991	235	126	-	_	
27	0.869	116	77	5.175	238	127	-	_	
28	0.899	118	78	5.319	241	128	-	_	
29	0.929	122	79	5.487	243	129	-	-	
30	0.960	122	80	5.656	247	130	_	_	
31	0.997	123	81	5.817	247	131	-	_	
32	1.022	125	82	5.985	249	132	_	_	
33	1.063	127	83	6.146	254	133	_		
34	1.093	129	84	6.310	253	134	_	_	
35	1.123	132	85	6.468	255	135		_	
36	1.153	132	86	6.632	259	136			
37	1.188	134	87	6.803	259	137			
38	1.218	135	88	6.962	261	138	-	-	
39	1.256	137	89	7.126	265	139	-	-	
40	1.334	143	90	7.120	264	140	-	-	
41	1.415	145	91	7.466	266	141	-	-	
42	1.494	148	92		270	142	-	-	
43			93	7.634		143	-	-	
	1.568	152		7.794	269		-	-	
44 45	1.657	155	94	7.965	270	144	-	-	
45 46	1.744	160	95	8.149	272	145	-	-	
46	1.809	162	96	8.311	274	146	-	-	
47	1.904	165	97	8.474	275	147	-		
48	1.982	168	98	8.678	276	148	-	-	
49	2.069	171	99	8.810	278	149	-		
50	2.164	173	100	8.979	281	150	-	-1	

AUTORIZZATO
A SETTORE "a"
CIRC. 08/09/2010
RO GEO

RO GEO

IL DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

È VIETATA LA RIPRODU<mark>Z</mark>IONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA S_{AL}

PROVA TRIASSIALE UU (ASTM D 2850) - INTERPOLAZIONE DATI

COMMITTENTE:

SPEA Engineering spa

Pagina 1 di 1

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA EMISSIONE:

14/11/2016

SONDAGGIO:

S 2

CAMPIONE:

CI-5

PROFONDITA': da m 27.00

a m

27.50

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime

finalità prefissate spetta al Progettista o Professionista incaricato.

	Intercetta sull' asse y	Inclinazione retta					
Risultati della regressione lineare	(kN/m²)	(°sess.)					
-	105.60	0.00					
Interpretazione eseguita su due provini, imponendo f=0							

determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle

△ provino 3 provino 1 provino 2 STRESS PATHS 300 250 200 q (kN/m²) 150 100 50 400 450 500 550 300 350 0 50 100 150 200 250 $p (kN/m^2)$

NOTE:	

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 14/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0398 **CSP**

DATA ACCETTAZIONE:

05/10/2016

NORME DI

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

CAMPIONE: CI-6

PROFONDITA' (m):

31.50-32.00

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DECODIZIONE CINTETICA

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

CODICE

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE O FUORI STAZIONE

PROVA	DESCRIZIONE SINTETICA	Q.tà	RIFERIMENTO	DI PROVA	
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0398-01	
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0398-02	
TRX01a.1	Prova triassiale UU, eseguita su tre provini, compresa saturazione	1	ASTM D 2850	CSP 16/0398-03	
la					

per SINERGEA srl

MOQ-024 (Rev. 4 del 12/2014)

CERTIFICATO

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP_16/0398-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0398 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-6

Profondità:

31.50 -

32.00

DATA PRELIEVO:

05/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIÓNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

21/10/2016

DATA TERMINE PROVA:

21/10/2016

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE. Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

CPR 001 (Rev. 1 del 04/05)

File: CPR 001 DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0398-01

DATA EMISSIONE

14/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-6

PROFONDITA':

31.50 ÷ 32.00 m

Data descrizione

21/10/16

Forma del campione

: cilindrica

Qualità del campione (AGI):

Q.5.

Dimensioni del campione : L = 47 cm; $\phi = 8,4 \text{ cm}$

Prof	ondità					Descrizione			
da m	а	m							
31.53	31.	65 ca	mpione rir	maneggiato)				
31.65	31.	Pr	esenza di	veli e punt	inature ne	i S con L, SL, L con A, LA, A con L di colore oliva (5Y 5/3) erastre, piccoli frustoli e mica. con HCl 5%.			
31.90	32.	Pr	esenza d		rastri, veli e concrezioni calcarei, calcinelli, mica. ntatto con HCl 5%.				
LEGENDA	G Per	= Ghiaia i colori si f							
SCHE		CAMPI		P.P.	T.V.	PROVE ESEGUITE			
Prof. Nom (m)	inale	Profond	dità reale (m)	(MPa)	(MPa)				
31.50			31.53						
			31.65	0.21 =		CNW, MVT, TUU pr 1 e pr 2			
				0.27 <u></u>		CNW, MVT, TUU pr 3			

	 perpendicolare all' 	asse del ca	mpione	 parallelo all'asse del campione
SCHEMA DE	L CAMPIONE	P.P.	T.V.	PROVE ESEGUITE
Prof. Nominale	Profondità reale	(MPa)	(MPa)	
(m)	(m)	, ,	, ,	
31.50	31.53			
	31.65	0.21 = 0.27 \(\psi\) 0.18 \(\psi\) 0.18 \(\psi\) 0.2 \(\psi\)		CNW, MVT, TUU pr 1 e pr 2 LIM CNW, MVT, TUU pr 3
32.00	32.00	0.2 <u>\</u>		

LEGENDA:

CNW = contenuto in acqua MVT = massa volumica

il significato deg tri codisi, è riportato sulla prima pagina dei certificati di prova

DIRETTORE DI LABORATORIO

TORE SPERIME

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0398-01

DATA EMISSIONE:

14/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2

CAMPIONE: CI-6

PROFONDITA':

31.50

32.00

m

DIRETTORE DI ABORATORIO

SPERIMENTA

File: CPR_001_DSC.xls

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0398-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0398_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE :

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE :

fustella di acciaio

Sondaggio:

S 2

Campione:

Cl-6 **Profondità**:

31.50 -

32.00

m

DATA PRELIEVO:

05/10/16

I KEELEVO EITETT

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODÙZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

11/11/16

DATA TERMINE PROVA:

12/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE

Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CSP_16/0398-02

DATA EMISSIONE:

14/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

ASTM D4318 - Metodo A

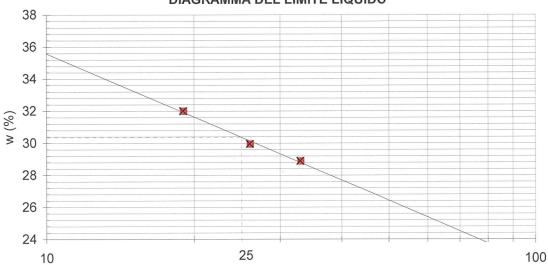
SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SM

S 2

CAMPIONE:

CI-6


PROFONDITA':

31.50

32.00 m

31.65-31.83 Profondità provino 2 Determinazione n° 1 3 4 36.5704 46.3249 41.3674 Massa tara g Numero colpi 33 19 26 Massa provino umido + tara 73.5166 86.8571 73.5412 g 66.1254 Massa provino secco + tara 65.2359 77.0307 g 30.0 Contenuto in acqua % 28.9 32.0 % Limite Liquido w 30

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4	
Massa tara	g	13.3655	14.0312	-	-	
Massa provino umido + tara	g	15.3452	16.782	- ,	-	
Massa provino secco + tara	g	15.0083	16.3168	-	-	
Contenuto in acqua	%	20.5	20.4	-	-	
Limite Plastico w _P	%		20			

	Indice di Plasticità (w _L - w _P)
I _P	10

DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 16/0398-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0398 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

Profondità: CI-6

31.50

32.00

m

DATA PRELIEVO:

05/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SII

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

7	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
É	TUU	Prova triassiale non consolidata non drenata	3	ASTM D 2850

DATA INIZIO PROVA:

03/11/16

DATA TERMINE PROVA:

03/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Oott. Enrico BERTOCCHI

IL DIRETTORE DEL LABORATORIO Dott. Geol. Davio GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

File: CPR_028_TUU.xls

CSP_16/0398-03

DATA EMISSIONE: 14/11/2016

PRO	VA TRIA	SSI	ALE	U.U.				ASTM D	2850			
SON	DAGGIO)	:	S 2	CAN	IPIONE	: CI-6	PROFONDITA'	: 31.50	÷	32.00	n
PRO\	VINO					n°	1	2	3	Т	-	
Profo	ndità pro	vino				da m	31.65	31.65	31.74		-	
Profo	ndità pro	vino				a m	31.74	31.74	31.83		-	
Cond	izione de	l prov	/ino			-	indisturbato	indisturbato	indisturbato		-	
Diame	etro inizia	ale pr	ovino)		mm	38.10	38.10	38.10		-	
Altezz	za iniziale	prov	/ino			mm	76.20	76.20	76.20		-	
σ3	(pressio	ne in	cella	3)		kPa	400.00	500.00	700.00		-	
(σ1-α						kN/m²	299.18	315.14	194.30		-	
Corre	zione per	r filtro	e me	embrana		kN/m²	0	0	0		-	
	ALITA' DI										-	
	azione su					°sess.	-	-	-		-	
												VANDO
provino 1				1		♦ provino 2	▲ pro	ovino 3				
					STF	RESS PATHS						
	350											
	-											
	300											
	E											
	250						4					
	200											
	-											
m²)	200											
Ŝ	-											
q (kN/m²)	150											
	-							Milliage				
	100							and the state of t				
	100						THE REAL PROPERTY.		4			
	-				J.		THE REAL PROPERTY.					
	50		-			F*						
	-						STATE OF THE PARTY					
	-		4			•				4		
	0 💆			100	150	200	250 30	00 350 40	0 450	500	550)
			50									-
	0		50	100				anora.				
			50	100			p (kN/m²)	SINERGEA S		/)	
	0							AUTORIZZAT)	
	0	гтоr		LABORA				Shara	SPERIN	ALENT)	

srl

LABORATORIO GEOTECNICO

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP 16/0398-03

DATA EMISSIONE:

14/11/2016

Pagina 3 di 7

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

È VIETATA I A PIPRODI IZIONE PARZIAI E NEI P<u>RESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL</u>

S 2

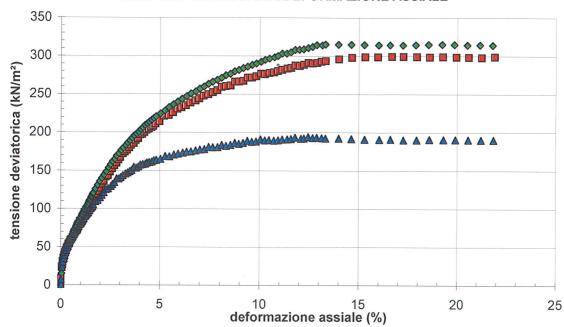
CAMPIONE

CI-6

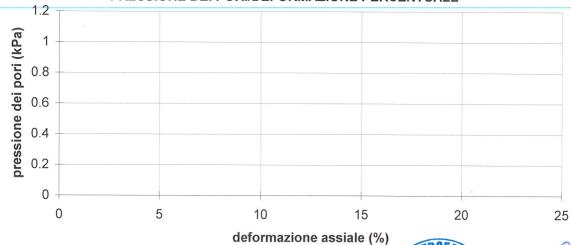
PROFONDITA':

31.50

32.00 m


provino 1

provino 2


▲ provino 3

.

TENSIONE DEVIATORICA/DEFORMAZIONE ASSIALE

PRESSIONE DEI PORI/DEFORMAZIONE PERCENTUALE

IL DIRETTORE DEL LABORATORIO

AUTORIZZATO SETTORE "a" OS CIRC. 08/09/2010 N 7618/STC

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051 78 889 - Fax +39 0516058949

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0398-03

DATA EMISSIONE: 14/11/2016

Pagina 4 di 7

PROVA TRIASSIALE U.U.

ASTM D 2850

SONDAGGIO

S 2

CAMPIONE :

CI-6

PROFONDITA':

31.50 ÷

32.00 m

PROVINO	n°	1	2	3	-
Profondità provino	da m	31.65	31.65	31.74	-
Profondità provino	a m	31.74	31.74	31.83	-
Condizione del provino	-	indisturbato	indisturbato	indisturbato	-
Diametro iniziale provino	mm	38.10	38.10	38.10	· -
Altezza iniziale provino	mm	76.20	76.20	76.20	-
INIZIO PROVA					
Peso dell'unità di volume	kN/m³	19.20	19.46	18.90	-
Riferimento					
Contenuto in acqua iniziale	%	25.85	25.56	29.45	-
Riferimento					
Peso un. volume secco iniziale	kN/m³	15.26	15.50	14.60	-
Peso sp. dei grani (assunto)	-	2.750	2.750	2.75	-
Riferimento					
Indice dei vuoti iniziale	-	0.764	0.737	0.844	-
Grado di saturazione iniziale	%	92.83	95.21	95.75	-
FASE DI SATURAZIONE					
Pressione pori iniziale	kPa				-
Valore di B iniziale	-				-
Pressione pori a saturazione	kPa				-
Pressione in cella finale	kPa				-
Valore di B a saturazione	-				-
FASE DI COMPRESSIONE				~	
Pressione in cella	kPa	400	500	700	-
Pressione pori iniziale	kPa	349	447	642	-
σ'_3	kPa	54	56	59	-
Velocità pressa	mm/min	1.0000	1.0000	1.0000	-
CONDIZIONI A ROTTURA					
Deformaz. assiale percentuale	%	17.26	19.22	12.45	-
(σ ₁ - σ ₃)	kN/m²	299.18	315.14	194.30	-
Correzione per filtro e membrana	kN/m²	0	0	0	-
p a rottura	kN/m²	249.59	357.57	497.15	-
q a rottura	kN/m²	149.59	157.57	97.15	CINERGE
FINE PROVA					1,0
Peso dell'unità di volume finale	kN/m³	19.52	19.78	19.25	AUTORIZZ SETTORE
Contenuto in acqua finale	%	26.64	25.69	29.13	O CIRC. 08/09/2
Peso un. volume secco finale	kN/m³	15.42	15.74	14.91	PA 7618/ST
Indice dei vuoti finale	-	0.746	0.711	0.806	OCINE. 08/09/2 PA 7618/5T
Grado di saturazione finale	%	98.00	99.22	99.21	-

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949

CPR_028 (Rev. 2 del 06/09)

File: CPR_028_TUU.xls

CSP_16/0398-03

DATA EMISSIONE:

14/11/2016

Pagina 5 di 7

DDOMA	TOLAGO	LAI	proc 1	
	TRIASS		-	

ASTM D 2850

SONDAGGIO : S2 **CAMPIONE:** CI-6 PROFONDITA':

31.50

32.00

m

PK	O	۷I	N	U
----	---	----	---	---

					PROV	INO 1		
lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)
1	0.007	10	51	2.228	191	101	9.137	369
2	0.041	27	52	2.295	195	102	9.300	372
3	0.072	35	53	2.395	201	103	9.470	376
4	0.102	40	54	2.473	204	104	9.632	376
5	0.131	44	55	2.559	207	105	9.804	378
6	0.167	48	56	2.647	211	106	9.963	381
7	0.196	51	57	2.711	215	107	10.132	383
8	0.231	55	58	2.817	218	108	10.638	389
9	0.267	57	59	2.887	223	109	11.137	395
10	0.299	61	60	2.976	226	110	11.640	399
11	0.333	63	61	3.056	232	111	12.125	402
12	0.365	66	62	3.133	233	112	12.669	406
13	0.396	68	63	3.217	236	113	13.116	409
14	0.441	71	64	3.300	240	114	13.635	412
15	0.473	74	65	3.385	242	115	14.132	415
16	0.504	77	66	3.485	245	116	14.642	419
17	0.528	79	67	3.554	247	117	15.164	422
18	0.575	82	68	3.640	251	118	15.644	425
19	0.603	84	69	3.792	255	119	16.147	428
20	0.626	87	70	3.965	264	120	16.647	433
21	0.656	89	71	4.142	266	121	-	-
22	0.680	91	72	4.308	271	122	-	-
23	0.728	95	73	4.468	277	123	-	-
24	0.756	96	74	4.619	280	124	-	-
25	0.794	98	75	4.794	284	125	-	-
26	0.816	101	76	4.961	289	126	-	-
27	0.848	103	77	5.155	293	127	-	-
28	0.881	105	78	5.297	297	128	-	-
29	0.908	109	79	5.460	302	129	-	-
30	0.946	109	80	5.636	305	130	-	-
31	0.980	111	81	5.812	309	131	-	-
32	1.014	114	82	5.975	313	132	-	-
33	1.046	116	83	6.139	319	133	-	-
34 35	1.085	118	84 85	6.300	321	134	-	-
36	1.123	123	86	6.477	323	135 136	-	-
37	1.155	123	87	6.646	330	137	-	-
38	1.180 1.217	125 127	88	6.803 6.972	331 333	138	-	-
39	1.254		89		339	139	-	-
40	1.329	130 137	90	7.137	340	140	-	-
41	1.414	141	91	7.303 7.466	343	141	-	-
42	1.485	146	92	7.400	348	142	-	-
43	1.566	152	93	7.794	348	143	-	-
44	1.656	157	94	7.794	351	144	-	-
45	1.732	164	95	8.148	353	145	-	-
46	1.818	166	96	8.292	356	146	-	-
47	1.901	172	97	8.460	359	147	-	-
48	1.981	177	98	8.661	362	148	-	-
49	2.068	182	99	8.805	364	149	-	5
50	2.153	186	100	8.967	369	150	-	-
	2.100	100	.50	0.007	000		-	-

IL DIRETTORE DI LABORATORIO

Sperimentat

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

È VIETATA LA RIPROD<mark>UZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA S^{AL}.</mark>

CSP_16/0398-03

DATA EMISSIONE:

14/11/2016

Pagina 6 di 7

PROVA TRIASSIALE U.U.	ASTM D 2850

SONDAGGIO: S2 CAMPIONE: CI-6 PROFONDITA': 31.50 ÷ 32.00 m

						PROV	INO 2			
	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	
	1	0.029	17	51	2.246	200	101	9.121	394	
	2	0.065	26	52	2.332	205	102	9.287	396	
	3	0.090	33	53	2.416	209	103	9.459	399	
A srl	4	0.126	38	54	2.514	213	104	9.622	402	
GE/	5	0.157	43	55	2.584	217	105	9.788	406	
NER	6	0.183	47	56	2.670	221	106	10.003	407	
A SI	7	0.222	51	57	2.752	225	107	10.124	409	
	8	0.255	55	58	2.834	229	108	10.617	412	
A D	9	0.286	58	59	2.920	232	109	11.112	415	
Ë	10	0.309	61	60	3.003	235	110	11.610	418	
SCI	11	0.344	64	61	3.083	239	111	12.152	421	
NE	12	0.381	68	62	3.164	242	112	12.602	424	
AZIC	13	0.409	70	63	3.243	246	113	13.100	427	
ZZ	14	0.440	73	64	3.334	249	114	13.595	431	
TOR	15	0.473	76	65	3.412	252	115	14.087	435	
AU	16	0.506	79	66	3.500	255	116	14.613	439	
AL	17	0.548	82	67	3.578	258	117	15.087	442	
ENZ	18	0.573	85	68	3.659	261	118	15.588	445	
/AS	19	0.601	87	69	3.828	266	119	16.082	449	
RO	20	0.629	90	70	3.998	271	120	16.573	452	
OI P	21	0.669	92	71	4.150	277	121	-	-1	
10	22	0.700	95	72	4.318	282	122	Ξ.	-	
OR	23	0.735	98	73	4.483	287	123	-	-0	
APF	24	0.768	100	74	4.649	292	124	-	-	
E R	25	0.799	103	75	4.817	297	125	-	-	
EN	26	0.830	105	76	4.984	302	126	-	-	
RES	27	0.870	108	77	5.155	306	127	-	-	
E P	28	0.898	111	78	5.311	311	128	-	-	
E DE	29	0.927	113	79	5.469	315	129	-	-	
TAL	30	0.958	116	80	5.636	320	130	-	-	
10	31	0.998	118	81	5.796	324	131	-	-	
ONE	32	1.034	120	82	5.969	328	132	-	-	
NZI	33	1.059	123	83	6.135	332	133	-	-	
È VIETATA LA RIPRODUZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI	34	1.091	126	84	6.300	337	134	-	-	
RIP	35 36	1.129	128	85 86	6.466	340	135	-	-	
, Y	37	1.160	131	86 87	6.631	345	136 137	-	-	
ATA	38	1.190	133	88	6.796	348	138	-	-	
/ET	39	1.223	136	89	6.967	352	139	-	-	
Ē	40	1.251	138	90	7.132	355	140	-	-	
	41	1.330	144	91	7.307	359	141	-	-	
	42	1.414	150	92	7.469	362	142	-	-	
	43	1.498	156		7.650	366	143	-	-	
	43	1.586	161	93 94	7.802	370	143	-	-	/
	45	1.671	166		7.969	373		-	-	<u>/</u> =
	45 46	1.755	171	95 96	8.162	376	145 146	-	-	
	46 47	1.841	177	96 07	8.298	379	146 147	-	-	(3
	48	1.917	182	97	8.461	384	147	-	-	\
		1.994	187	98	8.634	385	148	-	-	
	49 50	2.086	191	99 100	8.792	388	149 150	-	-	
	50	2.156	196	100	8.955	393	150	-	-	

IL DIRETTORE DI LABORATORIO

Sperimenta

CSP_16/0398-03

DATA EMISSIONE:

14/11/2016

Pagina 7 di 7

PROVA TRIASSIALE U.U. **ASTM D 2850**

SONDAGGIO: S2 CAMPIONE: CI-6 PROFONDITA': 31.50 32.00 m

\mathbf{D}	D	O١	/1	NI	\sim	2

						PROV	/INO 3			
	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	lettura n°	DH (mm)	Carico (N)	
	1	0.013	8	51	2.235	161	101	9.167	245	
	2	0.044	26	52	2.305	163	102	9.282	246	
:1	3	0.074	34	53	2.386	166	103	9.444	249	
	4	0.113	39	54	2.485	169	104	9.613	248	
	5	0.140	44	55	2.570	171	105	9.773	249	
	6	0.171	48	56	2.649	173	106	9.958	249	
	7	0.199	51	57	2.723	175	107	10.106	249	
	8	0.233	55	58	2.810	180	108	10.613	251	
	9	0.258	58	59	2.899	179	109	11.099	252	
	10	0.312	61	60	2.977	181	110	11.602	253	
	11	0.333	63	61	3.053	184	111	12.155	255	
	12	0.362	66	62	3.148	185	112	12.595	257	
	13	0.400	68	63	3.243	186	113	13.092	258	
	14	0.432	70	64	3.307	188	114	13.601	260	
	15	0.460	72	65	3.397	189	115	14.095	263	
	16	0.503	75	66	3.489	190	116	14.635	265	
	17	0.531	77	67	3.569	192	117	15.095	267	
	18	0.560	79	68	3.659	193	118	15.591	269	
	19	0.609	81	69	3.821	195	119	16.089	271	
	20	0.634	83	70	4.002	200	120	16.576	273	
	21	0.653	85	71	4.159	200	121	-	-	
	22	0.684	87	72	4.325	203	122	-	-	
	23	0.719	90	73	4.491	205	123		-	
	24	0.762	91	74	4.664	207	124	-	-	
	25	0.793	93	75	4.813	209	125	-	-	
	26	0.825	95	76	4.976	210	126	-	-	
	27	0.848	97	77	5.148	212	127	-	-	
	28	0.882	99	78	5.312	214	128	-	-	
	29	0.918	102	79	5.475	215	129	-	-	
	30	0.949	103	80	5.641	219	130	-	-	
	31	0.985	105	81	5.798	219	131	-	-	
	32	1.020	107	82	5.976	220	132	-	-	
	33	1.047	108	83	6.135	224	133	1-	-	
_	34	1.097	111	84	6.302	223	134		-	-
	35	1.122	114	85	6.471	225	135	-	-	
	36	1.148	114	86	6.629	229	136	-	-	
	37	1.173	116	87	6.791	228	137	1-	-	
	38	1.211	117	88	6.955	230	138	-	-	
	39	1.243	120	89	7.117	234	139	1-	-	
	40	1.332	125	90	7.285	233	140	1-	-	
	41	1.418	127	91	7.448	234	141	-	-	
	42	1.504	131	92	7.616	238	142	-	-	al
	43	1.568	135	93	7.782	237	143	15	-	7
	44	1.653	139	94	7.941	238	144	-	-	LABORATO
	45	1.734	144	95	8.124	238	145	-	-	B CIR
	46	1.821	145	96	8.287	239	146	-	-	D n
	47	1.925	149	97	8.445	241	147	-	-	/A
	48	1.982	152	98	8.639	242	148	-	-	9
	49	2.061	155	99	8.783	243	149	-	-	
	50	2.147	161	100	8.944	246	150	-	~	

IL DIRETTORE DI LABORATORIO

Sperimer

40057 Grana olo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

È VIETATA LA RIPROD<mark>UZIONE TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA S11</mark>.

PROVA TRIASSIALE UU (ASTM D 2850) - INTERPOLAZIONE DATI

COMMITTENTE:

SPEA Engineering spa

Pagina 1 di 1

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

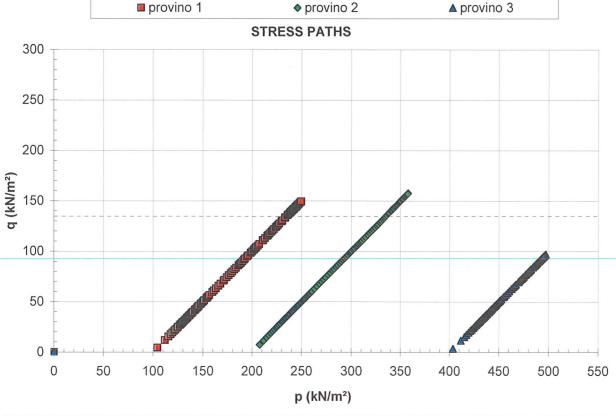
DATA EMISSIONE:

14/11/2016

SONDAGGIO:

S 2

CAMPIONE:


CI-6

PROFONDITA': da m 31.50

32.00 a m

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Intercetta sull' asse y	Inclinazione retta				
Risultati della regressione lineare	(kN/m²)	(°sess.)				
	134.77	0.00				
Interpretazione eseguita su tre provini, imponendo f=0						

NOTE:			

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 07/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0399

CSP

DATA ACCETTAZIONE:

05/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CR-1

PROFONDITA' (m):

5.90-6.50

CONTENITORE /PRESTAZIONE: doppio sacchetto PET

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
GRT02	Granulometria per via umida (max 10 vagli) su terre con elementi < 5 mm	1	ASTM D 422	CSP 16/0399-01
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0399-02

per SINERGEA srl

MOQ-024 (Rev. 4 del 12/2014)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP 16/0399-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0399 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

07/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

doppio sacchetto PET

Sondaggio:

S 2

Campione:

CR-1 Profondità: 5.90

6.50

DATA PRELIEVO:

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA:

27/10/2016

DATA TERMINE PROVA:

07/11/2016

TIMBRO BLU SULL' ORIGINAL

CPR 006 (Rev. 1 del 04/05)

SPERIMENTATORE ott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

File: CPR 006 GRA SED.xls

Sistema Qualità SINERGEA srl

È VIETATA LA RIPRODUZIONÈ PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0399-01

DATA EMISSIONE:

07/11/2016

Pagina 2 di 2

ANALISI GRANULOMETRICA

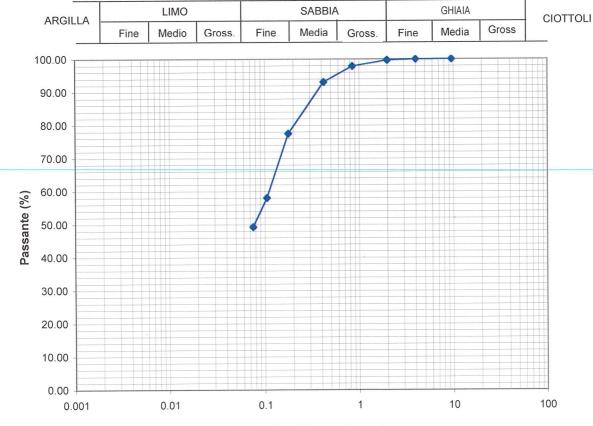
ASTM D 422

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

S 2

CAMPIONE:


CR-1

PROFONDITA':

5.90

6.50

Al	NALISI PER	VAGLIATUR	RA	ANALISI PER SE	DIMENT	AZIONE	
massa prov	ino - 34	45.47 g		massa provino	- g		
profondità p	rovino (5.90 ÷ (6.50 m	profondità provino	- ÷	-	m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	.750 -	assunt	0
	mm	% in peso	% in peso	Riferimento: -			
1 1/2 "	38.1	-	-	eseguita sul passante a	l vaglio	200	
1 "	25.4	-	-	aerometro ASTM 15	1H		
3/4 "	19.05	-	-	DIAMETRO EQUIVALENTE	% IN PES	O PIU' FI	ne di D
3/8 "	9.525	100.00	0.00	D (mm)			
5	4	99.93	0.07	-		-	2 ×
10	2	99.68	0.26	-		-	
20	0.85	97.87	1.81	-		-	
30	0.59	-	-	-		-	
40	0.42	93.07	4.80	-		-	
50	0.297	-	-	-		-	
80	0.177	77.49	15.58	-		-	
100	0.149	-	-	-		-	
140	0.105	58.04	19.45	-		-	
200	0.075	49.23	8.81	-		-	

Diametro dei granuli (mm)

DIRETTORE DI LABORATORIO

AUTORIZZATO

SETTORE "a"

CIRC. 08/09/2010

Sperimentatore

DIRETTORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto **Ariore:** 1 del 04/05) File : CPR_006_GRA_SED.xis +39-051768869 - Fax +39-0516058949 Sistema Qualità SINERGEA srl

40057 Grai CPR_006 (Rev. 1 del 04/05) Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 16/0399-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0399_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

È VIETATA LA RIPRODUZIONE PARZIA<u>LE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI</u> LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

30/09/16

DATA DI EMISSIONE:

07/11/16

doppio sacchetto PET

Sondaggio:

S 2

DESCRIZIONE CONTENITORE DEL CAMPIONE:

Campione:

CR-1 Profondità: 5.90

6.50

m

DATA PRELIEVO:

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

Ĺ				
	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
	LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

01/11/16

DATA TERMINE PROVA:

01/11/16

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE ott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

File: CPR_008_LIM.xls

Sistema Qualità SINERGEA srl

CPR 008 (Rev. 1 del 04/05)

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0399-02

DATA EMISSIONE:

07/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

ASTM D4318 - Metodo A

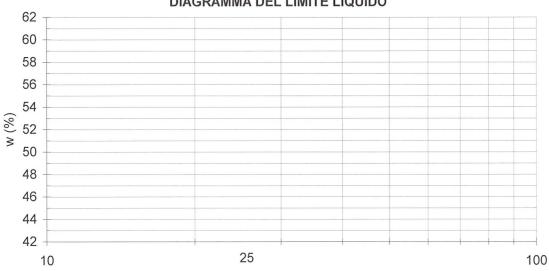
SONDAGGIO:

È VIETATA LA RIPRODUZIÓNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri,

S 2

CAMPIONE:

CR-1


PROFONDITA':

5.90

6.50 m

Profondità provino	m	5.90-6.50				
Determinazione	n°	1	2	3	4	
Massa tara	g	-	-	-	-	
Numero colpi	-	-	-	-	-	
Massa provino umido + tara	g	-	-	-	-	
Massa provino secco + tara	g	-	-	-	-	
Contenuto in acqua	%	-	-	-	-	
Limite Liquido w _L	%	non determinabile				

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4	
Massa tara	g	-	-	-	-	
Massa provino umido + tara	g	-	-	-	-	
Massa provino secco + tara	g	-	-	-	-	
Contenuto in acqua	%	-	_	_	-	
Limite Plastico w _P	%	non plastico				

	Indice di Plasticità (w _L - w _P)
I _P	0

DIRETTORE DIL ABORATORIO

File: CPR_008_LIM.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 07/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0400

DATA ACCETTAZIONE:

05/10/2016

CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CR-2

PROFONDITA' (m):

10.40-10.80

CONTENITORE / PRESTAZIONE: doppio sacchetto PET

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E'VIETATA LA RIPRODUZIONE PARZIALE DÈL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 🕬

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
GRT02	Granulometria per via umida (max 10 vagli) su terre con elementi < 5 mm	1	ASTM D 422	CSP 16/0400-01
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0400-02

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP_16/0400-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0400_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

05/10/16

DATA DI EMISSIONE:

07/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE: doppio sacchetto PET

Sondaggio:

S 2

Campione: CR-2

Profondità:

10.40

10.80

m

DATA PRELIEVO:

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

ᅦ				
	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
1	GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA:

27/10/2016

DATA TERMINE PROVA:

07/11/2016

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR_006 (Rev. 1 del 04/05)

File: CPR_006_GRA_SED.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0400-01

DATA EMISSIONE:

07/11/2016

Pagina 2 di 2

ANALISI GRANULOMETRICA

ASTM D 422

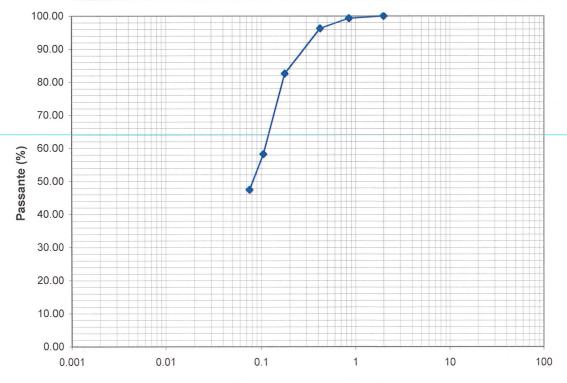
SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

S 2

CAMPIONE:

CR-2


PROFONDITA':

10.40

10.80 m

Al	NALISI PER	VAGLIATUR	RA	ANALISI PER SEDIMENTAZIONE				
massa prov	rino - 35	59.90 g		massa provino	-	g		
profondità p	rovino 1	0.40 ÷ 1	0.80 m	profondità provino	-	÷ -	m	
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	.750	- assun	to	
	mm	% in peso	% in peso	Riferimento: -				
1 1/2 "	38.1	-	-	eseguita sul passante a	l vaglio	200		
1 "	25.4	-	-	aerometro ASTM 15	1H			
3/4 "	19.05	-	-	DIAMETRO EQUIVALENTE	% IN P	ESO PIU' F	INE DI D	
3/8 "	9.525	-	-	D (mm)				
5	4	-	-	-		-		
10	2	100.00	0.00	-		-		
20	0.85	99.33	0.67	-	-			
30	0.59	-	-	-	-			
40	0.42	96.24	3.09	-	-			
50	0.297	-	-	-		-		
80	0.177	82.57	13.67	-		-		
100	0.149	-	-	-		-		
140	0.105	58.18	24.40	-		-		
200	0.075	47.40	10.78	-		-		

ARGILLA .	LIMO			SABBIA			GHIAIA			CIOTTOLI
	Fine	Medio	Gross.	Fine	Media	Gross.	Fine	Media	Gross	CIOTTOLI

Diametro dei granuli (mm)

DIRETTORE DI LABORATORIO

AUTORIZZATO SETTORE "a" CIRC. 08/09/2010

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Interiore - Gel File: CPR_006_GRA_SED.xls

+39-051768869 - Fax +39-0516058949 Sistema Qualità SINERGEA srl

CPR_006 (Rev. 1 del 04/05)

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0400-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0400_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

30/09/16

DATA DI EMISSIONE:

07/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

doppio sacchetto PET

Sondaggio:

S 2

Campione:

CR-2 Profondità: 10.40

10.80

m

DATA PRELIEVO:

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

<u>Ė VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI</u>

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

01/11/16

DATA TERMINE PROVA:

01/11/16

TIMBRO BLU SULL' ORI

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Darjo GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

CPR_008 (Rev. 1 del 04/05)

File: CPR_008_LIM.xls

CSP_16/0400-02

DATA EMISSIONE:

07/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

- ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZÍONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

S 2

CAMPIONE:

CR-2

PROFONDITA':

10.40 ÷

10.80 m

Profondità provino	m	10.40-10.80				
Determinazione	n°	1	2	3	4	
Massa tara	g	-	-	-	-	
Numero colpi	-	-	-	-	-	
Massa provino umido + tara	g	-	-		-	
Massa provino secco + tara	g	-	-	-	-	
Contenuto in acqua	%	-	-	-	-	
Limite Liquido w _∟	%	non determinabile				

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4	
Massa tara	g	-	y-	-	-	
Massa provino umido + tara	g	-	-	-	-	
Massa provino secco + tara	g	-	-	-		
Contenuto in acqua	%			-	-	
Limite Plastico w _P	%	non plastico				

	Indice di Plasticità (w _L - w _P)
I _P	0

DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 14/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0441

CSP

DATA ACCETTAZIONE:

25/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CI-7

PROFONDITA' (m):

40.50-41.00

CONTENITORE / PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E: VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0441-01
CNW02	Contenuto in acqua	1	ASTM D 2216	CSP 16/0441-02
MVT01	Peso di volume con fustella tarata	1	UNI CEN ISO/TS 17892-2	CSP 16/0441-03
GRT04	Granulometria combinata per vagliatura e sedimentazione	1	ASTM D 422	CSP 16/0441-04
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0441-05

per SINERGEA srl

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP 16/0441-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0441_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

25/10/16

DATA DI EMISSIONE:

14/11/16

fustella acciaio

Sondaggio:

S 2

DESCRIZIONE CONTENITORE DEL CAMPIONE:

Campione:

Profondità: CI-7

40.50

41.00

m

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

07/11/2016

DATA TERMINE PROVA:

07/11/2016

TIMBRO BLU SU

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

CPR_001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0441-01

DATA EMISSIONE

14/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-7

PROFONDITA':

 $40.50 \div 41.00 \text{ m}$

Data descrizione

07/11/16

Forma del campione

: cilindrica

Qualità del campione (AGI):

Q.5.

Dimensioni del campione : L = 55 cm; $\phi = 8,4$ cm

	Profondità		Descrizione
	da m	a m	·
SEA srl.	40.45	40.66	campione rimaneggiato .
VERC	40.66	40.78	LAS / LSA di colore grigio verdastro (N 5/1)
A DELLA SIN			Presenza di veli e concrezioni calcarei, calcinelli, puntinature nerastre, mica. Medio/Forte reazione a contatto con HCI 5%.
ENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri	40.78	41.00	SL / S debolmente L di colore grigio verdastro (N 5/1) Presenza di macropori e mica. Forte reazione a contatto con HCI 5%.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA

LEGENDA : A = Argilla/Argilloso L = Limo/Limoso

S = Sabbia/Sabbioso

T = Torba/Torboso

G = Ghiaia/Ghiaioso

F = Fine

M = Medio

C = Grossolano

Per i colori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi)

mandicalare all'acce del commissione

$_{\perp}$ = perpendicolare all'asse del campione = parallelo all'asse del campione						
SCF	IEMA DE	L CAMPION	1E	P.P.	T.V.	PROVE ESEGUITE
Prof. N	ominale	Profondità	reale	(MPa)	(MPa)	
(m)			(m)	,	,	
40.50			40.45			
			40.78	0.36 <u>\</u>		CNW, MVT, GRA, LIM
41.00		4	41.00	0.18 ⊥		

LEGENDA:

CNW = contenuto in acqua MVT = massa volumica

il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova

DIRETTORE DI LABORATORIO

AUTORIZZATO SETTORE "a" CIRC. 08/09/2010 n° 7618/STC

File: CPR 001 DSC.xls

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Sistema Qualità SINERGEA srl

CPR 001 (Rev. 1 del 04/05)

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0441-01

DATA EMISSIONE:

14/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2

CAMPIONE: CI-7

-7 **P**F

PROFONDITA':

40.50

41.00

m

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05)

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°

CSP 16/0441-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0441 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

30/09/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

Sondaggio:

S 2

Campione:

CI-7 Profondità: 40.50

41.00

m

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
CNW	Contenuto in acqua	1	ASTM D 2216

DATA INIZIO PROVA:

07/11/2016

DATA TERMINE PROVA:

08/11/2016

DETERMINAZIONE	(n°)	1	2	3	4	5
Profondità	(m)	40.66-40.75				
Tara	(n°)	85				
massa tara (t)	(g)	56.23				
Cu + t	(g)	160.08				
Cs + t	(g)	139.54				
W	(%)	24.65				
Prova di riferimento						120

Cu

massa provino umido

Cs

massa provino secco

contenuto in acqua

TIMBRO BL

SETTORE "a" CIRC. 08/09/2010

SRERIMENTATORE ott, Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 1

CERTIFICATO n°:

CSP_16/0441-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0441 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

25/10/16

DATA DI EMISSIONE:

14/11/16

DATA DI ACCETTAZIONE:

fustella di acciaio

Sondaggio:

S 2

DESCRIZIONE CONTENITORE DEL CAMPIONE:

Campione:

CI-7 Profondità: 40.50

- 41.00

m

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIÓNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
MVT	Massa volumica con fustella tarata	1	UNI CEN ISO/TS 17892-2

DATA INIZIO PROVA:

07/11/2016

DATA TERMINE PROVA:

07/11/2016

	PROVA n°	(-)	1	2	3	4	5
	Profondità	(m)	46.36-46.45				
	Fustella n°	(-)	-		*		
	Massa fustella (t)	(g)	52.35				
	V	(cm³)	40	-	-	-	ı
4	Cu + t	(g)	131.06				
	γ	(Mg/m³)	1.968			-	-
	Riferimento						

Cu massa provino umido

SETTORE "a

Volume fustella

massa volumica

TIMBRO BLU SI

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio O GRUNDLER Dott. Geol De

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, Ĉ.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR_003 (Rev. 2 del 06/09)

File: CPR_003_MVT.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP 16/0441-04

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0441_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

25/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

S 2

Campione:

CI-7 Profondità: 40.50 41.00

m

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIÒNE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
1	GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA:

09/11/2016

DATA TERMINE PROVA:

10/11/2016

SPERIMENTATORE Dott. Enrido BERFOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR 006 (Rev. 1 del 04/05)

File: CPR 006 GRA_SED.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0441-04

DATA EMISSIONE:

14/11/2016

Pagina 2 di 2

ANALISI GRANULOMETRICA

ASTM D 422

SONDAGGIO:

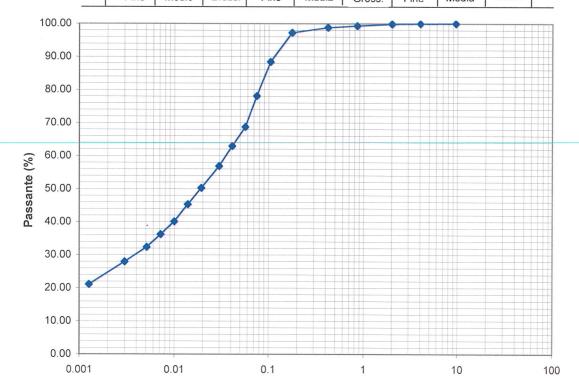
S 2

CAMPIONE:

CI-7

PROFONDITA':

40.50 ÷


41.00 m

A	NALISI PER		RA	ANALISI PER SE	EDIMENTAZIONE
massa prov	vino - 22	24.85 g		massa provino 4	14.56 g
profondità	provino 4	0.66 ÷ 4	0.75 m	profondità provino 4	10.66 ÷ 40.75 m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	2.750 - assunto
	mm	% in peso	% in peso	Riferimento: -	
1 1/2 "	38.1	-	-	eseguita sul passante a	l vaglio 200
1 "	25.4	-	-	aerometro ASTM 15	51H
3/4 "	19.05	-	-	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI D
3/8 "	9.525	100.00	0.00	D (mm)	
5	4	99.97	0.03	0.05662	68.68
10	2	99.85	0.12	0.04101	62.90
20	0.85	99.34	0.51	0.02970	56.84
30	0.59	-	-	0.01926	50.23
40	0.42	98.78	0.56	0.01386	45.28
50	0.297	-	-	0.00998	40.05
80	0.177	97.24	1.53	0.00715	36.20
100	0.149	-	-	0.00512	32.34
140	0.105	88.41	8.83	0.00300	27.94
200	0.075	78.05	10.36	0.00126	21.06

ARGILLA

LIMO SABBIA GHIAIA

Fine Medio Gross. Fine Media Gross. Fine Media Gross

Diametro dei granuli (mm)

DIRETTORE DI LABORATORIO

AUTORIZZATO
SETTORE "a"
O Roboto 7618/STC

Sperimentatore

CPR_006 (Rev. 1 del 04/05)

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto dell'emilia, via Badini 6/6 Fraz. Quarto del identifica del 104/05)

File : CPR_006_GRA_SED.xls

+39-051768869 - Fax +39-0516058949 Sistema Qualità SINERGEA srl

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0441-05

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0441_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

25/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

Sondaggio:

S 2

Campione: CI-7

Profondità:

40.50

41.00 m

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

11/11/16

DATA TERMINE PROVA:

12/11/16

SPERIMENTATORE ott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

CERTIFICATO n°

CSP_16/0441-05

DATA EMISSIONE:

14/11/2016

Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA

ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

S 2

CAMPIONE:

CI-7

PROFONDITA':

40.50 ÷ 41.00 m

Profondità provino	m		40.66	-40.75	
Determinazione	n°	1	2	3	4
Massa tara	g	31.9446	46.7570	41.5385	-
Numero colpi	-	12	22	33	-
Massa provino umido + tara	g	61.0144	83.8463	72.1895	-
Massa provino secco + tara	g	53.5414	74.9449	65.2235	-
Contenuto in acqua	%	34.6	31.6	29.4	-
Limite Liquido w _∟	%		3	31	

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	17.3411	19.9978	-	-
Massa provino umido + tara	g	19.8254	22.642	-	_
Massa provino secco + tara	g	19.4058	22.2110	-	-
Contenuto in acqua	%	20.3	19.5	-	-
Limite Plastico w _P	%		2	0	

Indice di Plasticità (w _L - w _P)	
I _P	11

DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 14/11/2016

COMMESSA N°:

16/126

VERBALE DI ACCETTAZIONE N°: 16/0442 **CSP**

DATA ACCETTAZIONE:

25/10/2016

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO: Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° Lotto ASSE LUNGOSAVENA- S16094

SONDAGGIO:

S2

CAMPIONE: CI-8

PROFONDITA' (m):

45.00-45.50

CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: GEO-PROBE srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:

OSSERVAZIONI:

E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP 16/0442-01
CNW02	Contenuto in acqua	1	ASTM D 2216	CSP 16/0442-02
MVT01	Peso di volume con fustella tarata	1	UNI CEN ISO/TS 17892-2	CSP 16/0442-03
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP 16/0442-04

per SINERGEA srl

MOQ-024 (Rev. 4 del 12/2014)

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°:

CSP_16/0442-01

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0442 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

25/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella acciaio

Sondaggio:

PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.

È VIETATA LA RIPRODUZIONE

S 2

Campione:

CI-8 Profondità: 45.00 -

45.50

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

Dott. Andrea MASTRANGELO

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

ı				
	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
	DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA:

07/11/2016

DATA TERMINE PROVA:

07/11/2016

SPERIMENTATORE Dott. Enrico BERTOCCHI lucor

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

CERTIFICATO n°

CSP_16/0442-01

DATA EMISSIONE

14/11/2016

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE

- ASTM D2488

SONDAGGIO:

S 2

CAMPIONE:

CI-8

PROFONDITA':

45.00 45.50 **m**

Data descrizione

07/11/16

Forma del campione

cilindrica

: L = 52 cm; $\phi = 8.4 \text{ cm}$ Dimensioni del campione Qualità del campione (AGI): Q.5.

Profo	ndità	Descrizione
da m	a m	
44.98	45.03	campione rimaneggiato
45.03	45.35	LAS / L con AS di colore grigio verdastro (5GY 5/1)
		Presenza di frustoli, veli e puntinature nerastre, veli calcarei, mica. Media reazione a contatto con HCI 5%.
44.98 45.03 45.35	45.50	A L di colore come sopra. Presenza di puntinature nerastre, piccoli frustoli, livelli millimetrici a maggiore frazione limosa, mica. Debole reazione a contatto con HCI 5%.
LECENDA		roille/Aroillege I - Lime/Limese S = Sabbia/Sabbiase T = Torba/Torbase

LEGENDA

A = Argilla/Argilloso

= Limo/Limoso

= Sabbia/Sabbioso

T = Torba/Torboso

				asse del c		Charts" (sigla tra parentesi) = parallelo all'asse del campione
SCH	IEMA DEI	CAMPIC	NE	P.P.	T.V.	PROVE ESEGUITE
Prof. No (m)	ominale	Profondi	tà reale (m)	(MPa)	(MPa)	
45.00			44.98 45.03	0.4 =		
				0.23 _		CNW, MVT, LIM
				0.26 ⊥		
			45.35	0.27 ⊥		
				0.23 ⊥		
45.50			45.50	0.2 =		

LEGENDA:

CNW = contenuto in acqua = massa volumica

il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova

DIRETTORE DI LABORATORIO

9-051768869 - Fax +39-0516058949 40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto

> Sistema Qualità SINERGEA srl File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n°

CSP_16/0442-01

DATA EMISSIONE:

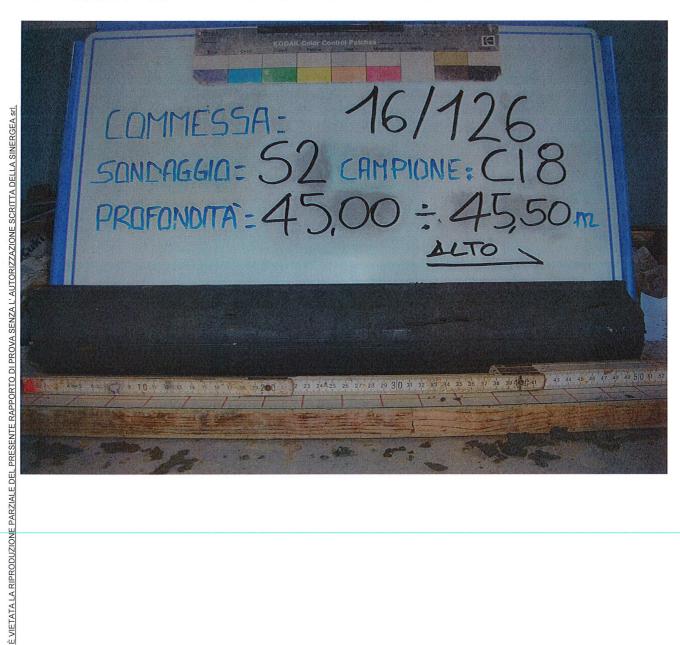
14/11/2016

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

S 2


CAMPIONE: CI-8

PROFONDITA':

45.00

45.50

m

DIRETTORE DI LABORATORIO

SPERIMENTATORE

File: CPR_001_DSC.xls

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°

CSP_16/0442-02

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0442 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

30/09/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

n° prove

Sondaggio:

S 2

DESCRIZIONE PROVA

Contenuto in acqua

Campione:

CI-8

Profondità:

45.00 45.50

NORMATIVA DI RIFERIMENTO

ASTM D 2216

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI</u>

CODICE

CNW

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

DATA INIZIO PROVA:	07/11/20)16		DATA TER	RMINE PROVA:	08/11/2016	
DETERMINAZIONE	(n°)	1	2	3	4	5	
Profondità	(m)	45.03-45.16					
Tara	(n°)	252					
massa tara (t)	(g)	46.71					
Cu + t	(g)	132.04					
Cs + t	(g)	113.54					
w	(%)	27.68	2				

Cu massa provino umido massa provino secco Cs contenuto in acqua

TIMBRO BL SULL ORIGINALE

Prova di riferimento

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 1

CERTIFICATO n°:

CSP_16/0442-03

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0442 CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

25/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

Sondaggio:

S 2

Campione:

Profondità: CI-8

45.00

45.50

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
MVT	Massa volumica con fustella tarata	1	UNI CEN ISO/TS 17892-2

DATA INIZIO PROVA:

07/11/2016

DATA TERMINE PROVA:

07/11/2016

	PROVA n°	(-)	1	2	3	4	5
	Profondità	(m)	45.03-45.16				
	Fustella n°	(-)	-				
	Massa fustella (t)	(g)	52.35				
	V	(cm³)	40	-	- ,	-	-
1	Cu + t	(g)	130.01				
	γ	(Mg/m³)	1.942	-	-	-	-
	Riferiment	to			,		

massa provino umido Cu

Volume fustella

massa volumica

TIMBRO BLU

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Parjo GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR_003 (Rev. 2 del 06/09)

File: CPR 003 MVT.xls

Pagina 1 di 2

Autorizzato ad effettuare e certificare prove sulle terre con decreto n° 10323 del 29/10/2012 (settore A Circ. 08/09/2010 n° 7618/STC)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP_16/0442-04

COMMESSA:

16/126

VERBALE DI ACCETTAZIONE n°:

16/0442_CSP

RICHIEDENTE:

Dott. Andrea MASTRANGELO - Supervisore alle indagini

CONSEGNATARIO:

Dott. Andrea MASTRANGELO

COMMITTENTE:

SPEA Engineering spa

LOCALITA':

CASTENASO (BO)

CANTIERE:

PROGETTO DEFINITIVO 3° LOTTO ASSE LUNGOSAVENA - S16094

DATA DI ACCETTAZIONE:

25/10/16

DATA DI EMISSIONE:

14/11/16

DESCRIZIONE CONTENITORE DEL CAMPIONE:

fustella di acciaio

Sondaggio:

S 2

Campione:

Profondità: CI-8

45.00

45.50

m

DATA PRELIEVO:

18/10/16

PRELIEVO EFFETTUATO: GEO-PROBE srl

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

Dott. Andrea MASTRANGELO

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

	CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
l	LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA:

11/11/16

DATA TERMINE PROVA:

12/11/16

TIMBRO BLU SUL

SPERIMENTATORE Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

File: CPR_008_LIM.xls

CERTIFICATO n°

CSP_16/0442-04

DATA EMISSIONE:

14/11/2016

Pagina 2 di 2

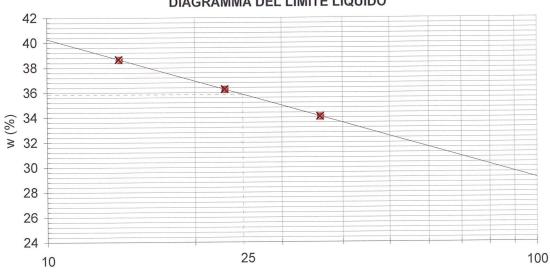
DETERMINAZIONE DEI LIMITI DI CONSISTENZA

- ASTM D4318 - Metodo A

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAL

S 2


CAMPIONE:

CI-8

PROFONDITA': 45.00 ÷ 45.50 m

Profondità provino	m		45.03	-45.16	
Determinazione	n°	1	2	3	4
Massa tara	g	32.2980	47.9768	41.5054	-
Numero colpi	-	14	36	23	-
Massa provino umido + tara	g	63.0587	85.7616	71.6891	-
Massa provino secco + tara	g	54.4830	76.1587	63.6567	-
Contenuto in acqua	%	38.7	34.1	36.3	_
Limite Liquido W	%		3	36	

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	17.1475	20.3335	-	-
Massa provino umido + tara	g	19.8431	23.0267	-	-
Massa provino secco + tara	g	19.3275	22.5215	-	-
Contenuto in acqua	%	23.7	23.1	-	-
Limite Plastico w _P	%		2	3	

	Indice di Plasticità (w _L - w _P)
I _P	13

DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR_008_LIM.xls