







Comune di n Ciovann in Persiceto



Comune di Casalecchio di Beni



Comune d Bologna



Comune di Sasso Marcon



Comune

Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese -

tratto 4: Casalecchio - Marzabotto cup nº c61821013060002

## PROGETTO DEFINITIVO



#### Coordinamento e integrazione delle prestazini specialistiche:

arch. Enrico Guaitoli Panini

#### Progettazione ciciabile e paesaggistica:

arch. Irene Esposito, paes. Giulia Mazzali, arch. Eleonora Vaccari, arch. Michela Gessani, dott. paes. Sara Martignoni, arch. Alberto Coppi

## Progettazione delle strutture:

prof. ing. Massimo Majowiecki, ing. Giovanni Berti, ing. Monica Mingozzi, ing. Elisa Sammarco, ing. Mario Chinni

#### Geologia, Ambiente, Idraulica:

geol. Pierluigi Dallari, geol. Arianna Casarini, geol. Lisa Gasparini, geol. Emiliano Quadernari, ing. Yos Zorzi

#### Coordinamento della sicurezza:

ing. Fausto Gallarello, ing. Roberto Perlangeli

## Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto Relazione tecnica delle strutture metalliche

| SIAIA   | FORMATO    |
|---------|------------|
|         | A4         |
| CODIŒ   | DATA       |
| REL_6_4 | 30/11/2023 |

Il Responsabile Unico del Procedimento:

ing, Maurizio Martelli

Supporto al RUP:

ing. Chiara Ferrari arch. Federica Sodano

ing. Sara Destro

dott.ssa Silvia Mazza

arch. Giulia Maroni

| N. REV. | DATA<br>30/11/2023 | DESCRIZIONE | DISEGNATO<br>S.P | CONTROLLATO<br>S.P. | APPROVATO<br>M.NI |
|---------|--------------------|-------------|------------------|---------------------|-------------------|
|         |                    |             |                  |                     |                   |
|         |                    |             |                  |                     |                   |
|         |                    |             |                  |                     |                   |











"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## **Sommario**

| 1             | Premessa                                                                                            | 4       |
|---------------|-----------------------------------------------------------------------------------------------------|---------|
| 2             | Illustrazione sintetica degli elementi essenziali del progetto esecutivo                            | 5       |
| 3             | Descrizione generale e strutturale dell'opera                                                       | 7       |
| 3.1           | L'opera principale: il ponte                                                                        | 7       |
| 3.1.1         | Tipologia nodi - Trave reticolare spaziale                                                          | 10      |
| 3.1.2         | Tipologia nodi - Pennoni                                                                            | 13      |
| 3.1.3         | Il montaggio                                                                                        | 15      |
| 3.2           | Le opere minori: le rampe di accesso                                                                | 16      |
| 3.3           | Opere in elevazione in c.a. e fondazioni                                                            | 16      |
| 3.4           | Condizioni d'uso e livelli di sicurezza della costruzione                                           | 17      |
| 3.4.1         | Classe d'uso                                                                                        | 17      |
| 3.4.2         | Classe di esecuzione                                                                                | 17      |
| 3.5           | Descrizione generale dei criteri generali di progettazione, analisi e verifica                      | 18      |
| 3.5.1         | Considerazioni sulle possibili vibrazioni indotte dal vento e dal transito dei pedoni               | 18      |
| 3.6<br>tecnio | Quadro normativo di riferimento adottato, norme di riferimento cogenti e altre norme e doci         |         |
| 4             | Note generali                                                                                       | 21      |
| 5             | Materiali strutturali                                                                               | 23      |
| 5.1           | Calcestruzzo                                                                                        | 23      |
| 5.1.1         | Classi di esposizione del cls delle strutture di fondazione e di elevazione                         | 23      |
| 5.1.2         | Caratteristiche dei calcestruzzi a prestazione garantita                                            | 23      |
| 5.1.3         | Copriferri                                                                                          | 24      |
| 5.1.4         | Assunzioni in tema di verifiche di fessurazione                                                     | 25      |
| 5.2           | Acciaio in barre d'armatura per conglomerato cementizio armato                                      | 25      |
| 5.3           | Acciaio per carpenteria metallica                                                                   | 26      |
| 5.3.1         | Acciaio da carpenteria                                                                              | 26      |
| 5.3.2         | Acciaio per tirafondi                                                                               | 27      |
| 5.3.3         | Acciaio per perni                                                                                   | 28      |
| 5.3.4         | Bulloni                                                                                             | 28      |
| 5.3.5         | Saldature e processi di saldatura                                                                   | 28      |
| 5.3.6         | Protezione dalla corrosione                                                                         | 29      |
| 5.3.7<br>Z)   | Resilienza del materiale e proprietà attraverso lo spessore - Classe dell'acciaio da carpenteria 30 | (valore |



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

## PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 5.4           | Lamiere grecate                                                                                                | 31 |
|---------------|----------------------------------------------------------------------------------------------------------------|----|
| 5.5           | Connettori lamiera grecata-cls                                                                                 | 31 |
| 5.6           | Funi                                                                                                           | 31 |
| 5.7           | Apparecchi d'appoggio                                                                                          | 32 |
| 6             | Analisi dei carichi                                                                                            | 33 |
| 6.1           | Vita nominale dell'opera                                                                                       | 33 |
| 6.2           | Aree di riferimento                                                                                            | 33 |
| 6.3           | Carichi permanenti                                                                                             | 33 |
| 6.3.1         | Pesi propri degli elementi strutturali                                                                         | 33 |
| 6.3.2         | Carichi permanenti portati                                                                                     | 33 |
| 6.4           | Carichi variabili per ponti di 3° categoria                                                                    | 34 |
| 6.5           | Azione convenzionale longitudinale                                                                             | 34 |
| 6.6           | Azione della neve                                                                                              | 35 |
| 6.7           | Azioni idrodinamiche                                                                                           | 35 |
| 6.8           | Spinta delle terre                                                                                             | 35 |
| 6.9           | Azioni della temperatura                                                                                       | 35 |
| 6.10          | Azione del vento                                                                                               | 36 |
| 6.10.:        | 1Coefficiente dinamico Cd (o CsCd)                                                                             | 38 |
| 6.11          | Azione del sisma                                                                                               | 42 |
| 6.11.:        | 1Spettri in accordo con TU 2018                                                                                | 42 |
| 6.12          | Combinazioni di carico                                                                                         | 46 |
| 7             | Analisi strutturale                                                                                            | 47 |
| 7.1           | Metodo di analisi degli effetti dell'azione sismica                                                            | 47 |
| 7.2           | Rispetto dei requisiti nei confronti degli stati limite                                                        | 48 |
| 7.3<br>elasti | Modalitá di calcolo delle capacitá degli elementi in c.a. con riferimento al loro comportico in ambito sismico |    |
| 7.4           | Effetti delle imperfezioni                                                                                     | 48 |
| 7.5           | Valori di calcolo delle resistenze dei materiali strutturali                                                   | 48 |
| 7.6           | Progettazione di elementi costruttivi non strutturali                                                          | 49 |
| 7.7           | Dimensionamento delle ampiezze del giunto longitudinale tra l'impalcato e la pila destra                       | 49 |
| 8             | Allegati e altri documenti                                                                                     | 49 |



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 1 Premessa

In accordo con le norme vigenti ed in particolare con l'atto di indirizzo nr. 1373/2011 ("Atto di indirizzo recante l'individuazione della documentazione attinente alla riduzione del rischio sismico necessaria per il rilascio del permesso di costruire e per gli altri titoli edilizi, alla individuazione degli elaborati costitutivi e dei contenuti del progetto esecutivo riguardante le strutture e alla definizione delle modalità di controllo degli stessi, ai sensi dell'art. 12, comma 1 e dell'art. 4, comma 1 della L.R. n. 19 del 2008" della Giunta della Regione Emilia Romagna, la presente relazione tecnica contiene la parte introduttiva denominata "Illustrazione sinstetica degli elementi essenziali del progetto strutturale" volta ad evidenziare gli elementi essenziali che caratterizzano il progetto e ad illustrare il processo attraverso il quale il progettista ha provveduto all'elaborazione del progetto stesso, alla luce della normativa tecnica e in considerazione delle caratteristiche del sito e della costruzione da realizzare.

L'obiettivo della presente Relazione Tecnica e dei suoi Allegati é di:

- sintetizzare, organizzare ed esplicitare, ove necessario, quanto richiesto dalle Norme Tecniche per le Costruzioni approvate con D.M. 17 gennaio 2018 (di seguito denominate NTC-2018) per la stesura del progetto esecutivo riguardante le strutture da parte del progettista, per la lettura da parte degli altri soggetti coinvolti nel processo di realizzazione e nell'uso della costruzione, per facilitare l'interpretazione da parte delle figure preposte al controllo, per consentire elaborazioni indipendenti da parte di soggetti diversi dal redattore del progetto esecutivo riguardante strutture, per garantire il rispetto delle prescrizioni normative per le stesse strutture e assicurare che nella redazione del progetto si sia tenuto debitamente conto delle esigenze di riduzione del rischio sismico;
- fornire indirizzi operativi in merito agli aspetti prestazionali e/o non definiti dalle NTC-2018 relativi agli elaborati del progetto, nel rispetto delle scelte progettuali e delle norme vigenti;
- garantire che l'attività di progettazione esecutiva sia stata affrontata nel suo complesso e volta a mitigare e risolvere le reciproche interferenze tra le componenti architettoniche, tecnologiche e strutturali dell'organismo edilizio;
- garantire che l'attività di progettazione esecutiva sia stata affrontata tenendo conto dei requisiti di resistenza meccanica e di durabilità con particolare riferimento alla riduzione degli interventi di manutenzione straordinaria da compiere durante la vita nominale dell'opera strutturale al fine di mantenerne nel tempo la funzionalità, le caratteristiche di qualità, l'efficienza e il valore economico; in sostanza progettare la struttura nei riguardi anche della durabilità e fornire le specifiche sui materiali e sulle modalità della loro posa in opera;
- garantire che la documentazione sia completa ed esaustiva affinché le prescrizioni in essa contenute consentano la realizzazione dell'intervento conformemente alle previsioni progettuali.

I contenuti del progetto esecutivo riguardante le strutture sono conformi alle prescrizioni delle norme vigenti, in particolare: all'art. 93 del D.P.R. n. 380/2001, alle NTC-2018 e alle altre norme ivi richiamate.

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 4 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 2 Illustrazione sintetica degli elementi essenziali del progetto esecutivo

Il presente paragrafo, contenente la "Illustrazione sintetica degli elementi essenziali del progetto strutturale", é organizzato secondo i contenuti specificati nell'Allegato B, paragrafo B.2.2. dell'atto di indirizzo nr. 1373/2011 e riportati nel riquadro seguente che associa a tali contenuti i riferimenti necessari a rintracciarli con facilità all'interno della Relazione (redatta secondo gli obiettivi espositivi del Progettista).

| Co | ntenuti                                                                                                                                                                                                                                                                                                                                                                                                      | Riferimenti                                                                                                                               |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| a) | descrizione del contesto edilizio e delle caratteristiche geologiche, morfologiche e idrogeologiche del sito oggetto di intervento e con l'indicazione, per entrambe le tematiche, di eventuali problematiche riscontrate e delle soluzioni ipotizzate, tenuto conto anche delle indicazioni degli strumenti di pianificazione territoriale e urbanistica;                                                   | Vedere Relazione Geologica; Vedere Relazione Geotecnica.                                                                                  |  |  |
| b) | descrizione generale della struttura, sia in elevazione che in fondazione, e della tipologia di intervento, con indicazione delle destinazioni d'uso previste per la costruzione, dettagliate per ogni livello entro e fuori terra, e dei vincoli imposti dal progetto architettonico;                                                                                                                       | Vedere: p.to 3 "Descrizione generale e strutturale dell'opera".                                                                           |  |  |
| c) | normativa tecnica e riferimenti tecnici utilizzati, tra<br>cui le eventuali prescrizioni sismiche contenute<br>negli strumenti di pianificazione territoriale e<br>urbanistica;                                                                                                                                                                                                                              | Vedere p.to 3.6 "  Quadro normativo di riferimento adottato, norme di riferimento cogenti e altre norme e documenti tecnici integrativi". |  |  |
| d) | definizione dei parametri di progetto che concorrono alla definizione dell'azione sismica di base del sito (vita nominale - VN, classe d'uso, periodo di riferimento - VR, categoria del sottosuolo, categoria topografica, amplificazione topografica, zona sismica del sito, coordinate geografiche del sito), delle azioni considerate sulla costruzione e degli eventuali scenari di azioni eccezionali; | Vedere:  p.to 3.4 "Condizioni d'uso e livelli di sicurezza della costruzione";  p.to 6.11 "Azione del sisma".                             |  |  |
| e) | descrizione dei materiali e dei prodotti per uso<br>strutturale, dei requisiti di resistenza meccanica e<br>di durabilità considerati;                                                                                                                                                                                                                                                                       | Vedere p.to 5 "Materiali strutturali".                                                                                                    |  |  |
| f) | illustrazione dei criteri di progettazione e di<br>modellazione: classe di duttilità - CD, regolarità in<br>pianta ed in alzato, tipologia strutturale, fattore di<br>struttura - q e relativa giustificazione, stati limite<br>indagati, giunti di separazione fra strutture<br>contigue, criteri per la valutazione degli elementi                                                                         | Vedere:  p.to 6.11 "Azione del sisma";  p.to 7 "Analisi strutturale".  Vedere Relazione Geologica;                                        |  |  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

|    |                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|    | non strutturali e degli impianti, requisiti delle fondazioni e collegamenti tra fondazioni, vincolamenti interni e/o esterni, schemi statici adottati;                                                                                                                                                                                                                                                  | Vedere Relazione di calcolo delle fondazioni.  |
| g) | indicazione delle principali combinazioni delle                                                                                                                                                                                                                                                                                                                                                         | Vedere p.to 6.12 "Combinazioni di carico";     |
|    | azioni in relazione agli SLU e SLE indagati:<br>coefficienti parziali per le azioni, coefficienti di<br>combinazione;                                                                                                                                                                                                                                                                                   | Vedere Allegati                                |
| h) | indicazione motivata del metodo di analisi seguito per l'esecuzione della stessa: analisi lineare o non lineare (precisazione del fattore $\Theta = P \cdot d/V \cdot h$ ), analisi statica o dinamica (periodo T1 < 2.5TC o TD, regolarità in altezza).  Nel dettaglio deve essere esplicitato se trattasi di:                                                                                         | Vedere Allegati.                               |
|    | <ul> <li>analisi lineare statica,</li> <li>analisi lineare dinamica (numero di modi considerati e relative masse partecipanti),</li> <li>analisi non lineare statica (distribuzioni di carico adottate e rapporti di sovraresistenza • αu/α1),</li> <li>- analisi non lineare dinamica (accelerogrammi adottati),</li> <li>- altro,</li> <li>riportando la sintesi dei principali risultati;</li> </ul> |                                                |
| i) | criteri di verifica agli stati limite indagati, in presenza di azione sismica:  o stati limite ultimi, in termini di resistenza, di duttilità e di capacità di deformazione,  stati limite di esercizio, in termini di resistenza e di contenimento del danno agli elementi non strutturali;                                                                                                            | p.to 7 "Analisi strutturale".                  |
| j) | rappresentazione delle configurazioni deformate e<br>delle caratteristiche di sollecitazione delle strutture<br>più significative, così come emergenti dai risultati<br>dell'analisi, sintesi delle verifiche di sicurezza, e<br>giudizio motivato di accettabilità dei risultati;                                                                                                                      | Vedere Allegati.                               |
| k) | caratteristiche e affidabilità del codice di calcolo;                                                                                                                                                                                                                                                                                                                                                   | Vedere Allegato Z.                             |
| I) | con riferimento alle strutture geotecniche o di fondazione: fasi di realizzazione dell'opera (se pertinenti), sintesi delle massime pressioni attese, cedimenti e spostamenti assoluti/differenziali, distorsioni angolari, verifiche di stabilità terrenofondazione eseguite, ed altri aspetti e risultati significativi della progettazione di opere particolari;                                     | Vedere Relazione di calcolo delle fondazionie. |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023

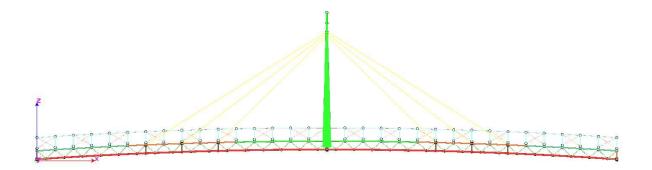
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 3 Descrizione generale e strutturale dell'opera

La presente relazione ha per oggetto la descrizione del progetto delle strutture metalliche della passerella ciclo-pedonale (e opere secondarie di accesso) sul Reno nel Comune di Sasso Marconi (località Fontana) e inserita nel tratto 4 "Casalecchio – Marzabotto " della "Ciclovia del Sole" (percorso Verona-Firenze).

Il progetto prevede la realizzazione di:


- un ponte di 3a categoria (ciclo-pedonale);
- una serie di rampe (In corrispondenza degli imbocchi del ponte).

Il percorso è progettato per il passaggio del solo traffico ciclo-pedonale (vedere p.to 6.4).

## 3.1 L'opera principale: il ponte

Il ponte ha 2 campate di lunghezza 40m circa ciascuna. La larghezza utile dell'impalcato è variabile da un minimo di 3m agli imbocchi ad un massimo di 4m in corrispondenza della pila centrale.

La struttura è costituita da una trave reticolare spaziale continua di lunghezza 80m formata da un corrente inferiore e due correnti superiori. Aste di parete diagonali collegano il corrente inferore ai correnti superiori. Un sistema di controvento di falda formato da diagonali e traversi collega tra loro i due correnti superiori.

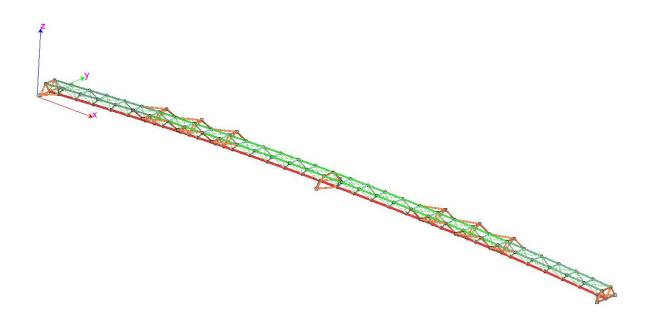


Prospetto struttura metallica

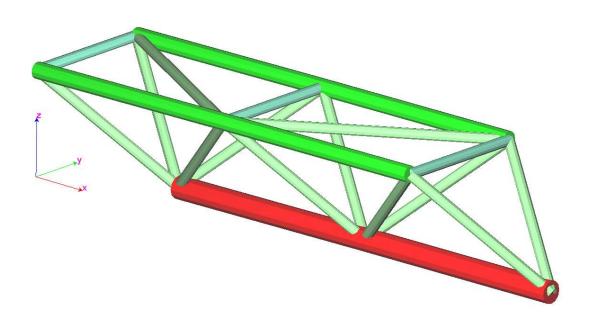
La trave reticolare spaziale ha un andamento planimetrico rettilineo e un andamento altimetrico arcuato con freccia centrale di 1.35cm circa. La sezione trasversale della trave reticolare spaziale è costante con altezza (asse-asse) di 1.15m e distanza reciproca di 1.5m tra i correnti superiori.

Le aste che compongono la reticolare spaziale sono in tubo circolare EN10219 (correnti superiori in CHS 177.8, corrente inferiore in CHS 244.5, diagonali e traversi in CHS 114.3) e collegate mediante connessione diretta saldata tubo su tubo. I nodi sono disposti con passo longitudinale di 2.5m.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag.* 7 *di* 49




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Vista assonometrica trave reticolare spaziale



Modulo trave reticolare spaziale in tubi

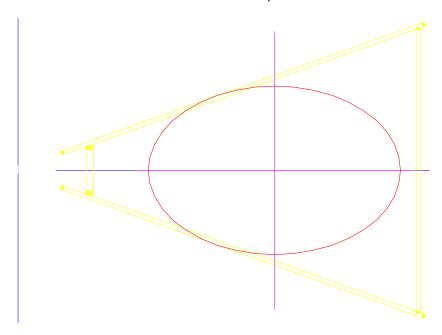
In corrispondenza dei nodi di estradosso sono disposti i traversi in profilo aperto HEAA 180 che proseguono a sbalzo fino ad ottenere la larghezza locale dell'impalcato. Alle estremità di ciascun traverso sono collegati i montanti dei parapetti. Sui traversi è disposto l'impalcato formato da una soletta in lamiera grecata e cls

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 8 di 49* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

collaborante di altezza complessiva 55+55 = 110mm. Su essa è posata il manto di calpestio. La soletta è collegata ai traversi metallici inferiori mediante connettori di tipo Hilti o equivalenti.

In corrispondenza della pila centrale spiccano due pennoni trasversali di lunghezza 19m e leggermente inclinati verso l'esterno (inclinazione di 12.5 deg circa rispetto la verticale). Ciascun pennone ancora due terne di stralli che si ancorano sul fianco dell'impalcato a circa metà di ciascuna campata.

I pennoni sono costituiti da cassoni metallici con sezione trapezoidale di ingombro via via decrescente con l'altezza (ingombro sezione di base: 1600mm x 1200mm circa).



Concio di base del pennone

L'acciaio per carpenteria è previsto essere di classe S355.

Le funi sono di tipo spiroidale in acciaio ad alta resistenza e hanno diametro 32mm. Ciascuna fune è fornita di capocorda regolabile in corrispondenza degli attacchi all'impalcato. Le funi sono installate e sottoposte ad uno stato di presollecitazione al fine di conferire loro uno stato iniziale di trazione.

Le strutture di sostegno del sistema impalcato + pennoni sono costituite da una spalla in c.a. sinistra orografica e due pile in c.a., una centrale e l'altra in destra orografica. In corrispondenza delle strutture terminali sono disposti 2+2 dispositivi di appoggio verticale e 1+1 dispositivi di vincolo trasversale. In corrispondenza della pila centrale la trave reticolare si ancora al traverso in acciaio che collega le basi dei piloni. Il vincolo longitudinale è localizzato sulla spalla mentre in corrispondenza delle pile sono ammessi i movimenti longitudinali. Sulla pila destra è localizzato il giunto longitudinale.

In corrispondenza degli appoggi sulle strutture in c.a e degli agganci alle funi la trave reticolare spaziale è dotata di estensioni in tubo atte a collegarla efficacemente ai dispositivi di appoggio ed ai capicorda delle funi.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 9 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

È stata prevista la possibilitá di installare martinetti di servizio per il sollevamento del ponte per consentire la manutenzione/sostituzione degli apparecchi d'appoggio.

## 3.1.1 Tipologia nodi - Trave reticolare spaziale

La tipologia di nodo tipica prevista nel progetto per la trave reticolare spaziale è caratterizzata dalla saldatura diretta tra tubi circolari: le aste di parete (diagonali, traversi e diagonali di falda) vengono saldate sui correnti superiori ed inferiore in modo da realizzare in officina moduli di trave di lunghezza tale da poter essere trasportabili in cantiere.



Esempio di reticolo spaziale realizzato mediante tubi circolare saldati tra loro

I moduli saranno poi assemblati in cantiere in corrispondenza dei giunti longitudinali (posizione da definire in fase di redazione del progetto esecutivo) che potranno essere di tipo saldato o bullonato (flange o giunzioni a taglio ad attrito).

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 10 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto





Esempio saldatura di testa per giunto di assemblaggio corrente inferiore

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag.* 11 *di* 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

In corrispopndenza dei nodi dove si concentrano le sollecitazioni (appoggi e attacchi degli stralli in fune) saranno previsti piatti di rinforzo atti a conferire al nodo una maggiore resistenza.



Esempio di nodo tra aste circolari con fazzoletti saldati



Esempio di nodo tra aste circolari e strallo

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag.* 12 *di* 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 3.1.2 Tipologia nodi - Pennoni

Il nodo di sommità che collega il pennone agli stralli è ottenuto mediante piatto longitudinale passante saldato a cui si connettono i capicorda medinate collegamento a perno.



Esempio di connessione tra sommità pennone e stralli

Le basi dei pennoni sono raccordate da un basamento in capenteria metallica che si ancora alla testa in c.a. della pila mediante tirafondi in acciaio ad alta resistenza (tipo Macalloy o equivalenti), posizionati all'interno del cassone e raggiungibili mediante aperture temporanee laterali che andranno successivamente richiuse (vedere immagini seguenti).

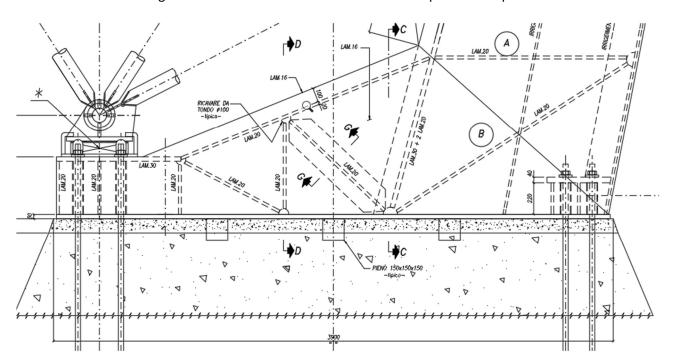


Esempio di apertura temporanea sul fianco del cassone del cassone per serraggio tirafondi

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 13 di 49* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Immagine che mostra la successiva chiusura delle aperture temporanee



Esempio di dettaglio di basamento con tirafondi interni

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag.* 14 *di* 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 3.1.3 Il montaggio

I moduli di trave reticolare spaziale pre-assemblati in officina e di lunghezza tale da poter essere trasportati in cantiere vengono poi collegati tra loro fino a formare due campate di lunghezza 40m. Queste vengono sollevate e portate nella posizione finale, collocandole sugli appoggi definitivi in corrispondenza delle opere in c.a. terminali e su appoggi temporanei in corrispondenza della pila centrale dove avverrà la giunzione finale tra le due campate. Successivamente vengono installati gli stralli nella sommità del pennone, imboccati ai p.ti di ancoraggio in corrispondenza degll'impalcato e infine tesati.

Sui moduli di reticolare spaziale sono già presenti i traversi dell'impalcato. Una volta montata la passerella vengono posate le lamiere grecate e viene eseguito il getto di cls.



Esempio di montaggio

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 3.2 Le opere minori: le rampe di accesso

Agli imbocchi del ponte il percorso ciclo-pedonale prosegue secondo rampe formate da impalcati in c.a. appoggiati su travi longitudinali di bordo in acciaio, aventi larghezza di 3m e luce 5m e sostenuti da portali in c.a. di altezza variabile secondo la configurazione del terreno.

## 3.3 Opere in elevazione in c.a. e fondazioni

Vedere la Relazione di calcolo delle opere in cemento armato e relative fondazioni.

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 16 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 3.4 Condizioni d'uso e livelli di sicurezza della costruzione

#### 3.4.1 Classe d'uso

L'opera é di nuova realizzazione. In accordo con la Committenza si assume, in accordo con il p. 2.4.1 NTC 2018:

Tipo di costruzione: Costruzione il cui uso prevede affollamenti significativi - Classe d'uso: Il

Vita nominale di progetto: VN = 50 anni

#### 3.4.2 Classe di esecuzione

Con riferimento alle normative UNI EN 1990 e UNI EN1993-1-1 si determina la classe di esecuzione.

Classe di conseguenza: CC2

| Classe di conseguenze | Descrizione                                                                                                                        | Esempi di edifici e di opere di ingegneria civile                                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CC3                   | Elevate conseguenze per perdita di vite umane, o conseguenze molto gravi in termini economici, sociali o ambientali                | Gradinate in impianti sportivi, edifici<br>pubblici nei quali le conseguenze del<br>collasso sono alte (per esempio, una sala<br>concerti)         |
| CC2                   | Conseguenze medie per perdita di vite umane, conseguenze considerevoli in termini economici, sociali o ambientali                  | Edifici residenziali e per uffici, edifici<br>pubblici nei quali le conseguenze del<br>collasso sono medie (per esempio un<br>edificio per uffici) |
| CC1                   | Conseguenze basse per perdita di vite umane, e<br>conseguenze modeste o trascurabili in termini<br>economici, sociali o ambientali | Costruzioni agricole, nei quali<br>generalmente nessuno entra (per<br>esempio, i magazzini), serre                                                 |

Classe di esecuzione EXC2 in base alla tabella seguente:

Struttura progettata per azioni quasi-statiche e per azioni sismiche in zona sismica di bassa intensitá.

| Reliability Class (RC)        | Type of loading                                  |                                                            |  |
|-------------------------------|--------------------------------------------------|------------------------------------------------------------|--|
| or<br>Consequences Class (CC) | Static, quasi-static or seismic DCL <sup>a</sup> | Fatigue <sup>b</sup> or seismic<br>DCM or DCH <sup>a</sup> |  |
| RC3 or CC3                    | EXC3c                                            | EXC3c                                                      |  |
| RC2 or CC2                    | EXC2                                             | EXC3                                                       |  |
| RC1 or CC1                    | EXC1                                             | EXC2                                                       |  |

<sup>&</sup>lt;sup>a</sup> Seismic ductility classes are defined in EN 1998-1, Low=DCL; Medium = DCM; High = DCH

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag.* 17 *di* 49

<sup>&</sup>lt;sup>b</sup> See EN 1993-1-9

<sup>&</sup>lt;sup>c</sup> EXC4 may be specified for structures with extreme consequences of structural failure



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 3.5 Descrizione generale dei criteri generali di progettazione, analisi e verifica

La tipologia strutturale prevista si pone gli obiettivi di conferire la necessaria rigidezza e resistenza alle azioni di progetto ed in particolare all'azione sismica.

I carichi permanenti e le azioni verticali di origine antropica sono trasferiti dalla soletta ai traversi metallici e da questi ai nodi della trave reticolare spaziale. La trave è sostenuta direttamente in corrispondenza delle strutture in c.a. (spalla dx, pila centrale e pila laterale sx) ed indirettamente dagli stralli ancorati ai pennoni metallici.

Le azioni orizzontali indotte dal vento e dal sisma sono trasferite dalla soletta dell'impalcato e dalla trave reticolare spaziale ai vincoli collocati in testa delle strutture in c.a..

#### 3.5.1 Considerazioni sulle possibili vibrazioni indotte dal vento e dal transito dei pedoni

La tipologia strutturale, la conseguente leggerezza ed il basso rapporto tra pesi permanenti e carichi portati, rendono questo tipo di ponti spesso sensibili all'eccitazione dinamica da parte dell'azione del vento e/o del transito dei pedoni.

L'entità delle conseguenti vibrazioni e la loro influenza sul confort degli utenti dell'opera (precisando che si tratta, comunque, di fenomeni che non minano la sicurezza strutturale) sono difficilmente prevedibili in fase di progetto. Infatti:

- a) lo smorzamento strutturale intrinseco (parametro alla base della determinazione della risposta dinamica), sebbene certamente modesto, può variare significativamente (tra lo 0,5 e il 2%, da esperienze su strutture simili in tal senso) e la sua esatta conoscenza può essere acquisita solo ad opera ultimata, mediante prove di caratterizzazione dinamica;
- b) l'eccitazione da parte dei pedoni dipende dalle effettive condizioni di esercizio (affollamento, condizioni di "marcia", etc.) ed è, ad oggi, un dibattuto tema di ricerca, essendo tutt'altro che consolidate le modalità di analisi e gli algoritmi per la definizione dell'input dinamico;
- c) ancora meno consolidate sono le modalità per la quantificazione della percezione del "disturbo"; l'esperienza mostra che, sulle strutture flessibili, moderate vibrazioni sono spesso percepite dagli utenti come del tutto "naturali" e non creano alcun tipo di disagio;
- d) relativamente all'azione aerodinamica ed aeroelastica del vento, infine, una sua più accurata determinazione avrebbe richiesto costose prove sperimentali in galleria del vento, non giustificabili in rapporto ai costi dell'intera opera.

Il problema può essere preliminarmente valutato attraverso la determinazione delle frequenze naturali della struttura e la successiva verifica che esse non ricadano all'interno di range indicati nella letteratura tecnica come critici nell'ambito dello sviluppo di vibrazioni e oscillazioni potenzialmente fastidiose.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023

Pag. 18 di 49



Codice:

Città Metropolitana di Bologna

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Il problema poi può essere efficacemente affrontato nello spirito della "Progettazione assistita da prove", previsto esplicitamente dall'Eurocodice (UNI EN 1990 - Criteri generali di progettazione strutturale - 5.2 Design assisted by testing), che nel merito riporta quanto segue:

«(1) Design may be based on a combination of tests and calculations.

NOTE Testing may be carried out, for example, in the following circumstances:

- if adequate calculation models are not available;
- if a large number of similar components are to be used;
- to confirm by control checks assumptions made in the design.»

È evidente che, per quanto sopra esposto, nel caso in esame le prove potranno essere efficacemente condotte solo a lavori ultimati. Ciò non costituisce, peraltro, un problema, non essendo comnunque interessata la sicurezza della costruzione. Pertanto, anche sulla base di esperienze analoghe dello scrivente, il problema delle possibili vibrazioni indotte dal vento e dal transito dei pedoni viene affrontato e, se necessario, risolto nelle seguenti fasi:

- i. in sede di progettazione esecutiva sarà prevista la possibilità di installare dispositivi di mitigazione delle vibrazioni; nello specifico, la soluzione più appropriata consisterebbe (sempre che se ne rilevi la necessità) nell'installazione di smorzatori a massa accordata (TMD - tuned mass dampers) all'intradosso dell'impalcato di calpestio e/o sulla sommità dei pennoni;
- ad opera ultimata (possibilmente già in sede di collaudo) saranno eseguite prove di caratterizzazione ii. dinamica volte alla misurazione del rapporto di smorzamento e delle esatte frequenze naturali dei modi di vibrare maggiormente significativi (parametri indispensabili per l'eventuale dimensionamento e calibrazione dei dispositivi);
- iii. nelle prime fasi di esercizio dell'opera si valuterà la risposta della struttura alle sollecitazioni dinamiche e, soprattutto, la conseguente percezione, in termini di confort, da parte degli utenti; se ritenuto opportuno, si potranno intergrare le valutazioni con una registrazione delle vibrazioni in condizioni di funzionamento reali;
- iv. infine, qualora se ne rilevasse la necessità, saranno progettati ed installati i dispositivi di mitigazione delle vibrazioni (TMD).

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

REL\_6\_4 Data: Novembre 2023 Pag. 19 di 49

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 3.6 Quadro normativo di riferimento adottato, norme di riferimento cogenti e altre norme e documenti tecnici integrativi

#### Generale

- D.M. 17.1.2018 Aggiornamento delle Norme Tecniche per le Costruzioni (NTC2018);
- Circolare n. 7, 21.1.2019 Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018;
- Legge Regionale 30 ottobre 2008 n. 19 Norme per la riduzione del rischio sismico;
- Delibera della Giunta Regione Emilia Romagna GPG/2011/1474 del 26 settembre 2011;

Progettazione delle strutture – Eurocodici e Documenti di Applicazione Nazionale associati

- EN1991. "Basi della progettazione ed azioni sulle strutture";
- EN1992. "Progettazione delle strutture di calcestruzzo";
- EN1993-1-1 "Progettazione delle strutture di acciaio: regole generali e regole per gli edifici";
- EN1993-1-8 "Progettazione delle strutture di acciaio: progettazione dei collegamenti";
- EN1993-2 "Progettazione delle strutture di acciaio: ponti di acciaio";
- EN 1994-1-1 Progettazione delle strutture composte acciaio-calcestruzzo: regole generali e regole per gli edifici;
- EN1998-1-1. "Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici".

Progettazione delle strutture - Documenti CNR

• CNR-DT-207-R1-2018 "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".

Linee guida per l'analisi delle vibrazioni nelle passerelle pedonali

Hivoss "Human induced vibrations of steel structures" – RFS2-CT-2007-00033 – Design of footbridges
 – Guideline.

Altri documenti/relazioni progettuali

- Relazione idrologica e idraulica Elaborato REL-2-1.
- Relazione geologica, geotecnica e sismica Elaborato REL-3-1.
- Relazione di calcolo delle opere in cemento armato e relative fondazioni Elaborato REL-5-4.

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 20 di 49

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 4 Note generali

- 1) L'Appaltatore deve attenersi a quanto previsto dai documenti contrattuali, modifiche e/o varianti sono attuabili se non dopo previa approvazione del Cliente e del Progettista.
- 2) Tutti gli elaborati grafici devono essere interpretati insieme al progetto architettonico, impiantistico ed alle specifiche di capitolato. Qualsiasi incongruenza riscontrata deve essere esplicitamente riportata per iscritto ai progettisti.
- 3) Per le finiture e le forometrie verificare anche sui disegni architettonici e impiantistici.
- 4) Non scalare i disegni per dedurne informazioni dimensionali.
- 5) Verificare la corrispondenza tra ciascuna quota numerica e la dimensione grafica dell'oggetto associato ed, in caso di discordanza, effettuare le necessarie controverifiche, assumendo come regola generale la prevalenza gerarchica della prima sulla seconda.
- 6) La struttura è progettata per essere fruibile nella sua configurazione finale interamente eretta. È responsabilità unica dell'Appaltatore di assicurare la sicurezza e la stabilità dell'opera e delle sue parti componenti durante le fasi costruttive del progetto.
- 7) In qualsiasi momento l'Appaltatore é il solo responsabile per le condizioni di cantiere, incluse la sicurezza delle persone e delle proprietà.
- 8) L'Appaltatore é il solo responsabile della protezione delle strutture esistenti adiacenti. Se durante demolizioni, scavi o costruzioni, le attuali condizioni risultino differenti da quanto riportato negli elaborati di progetto, ciò deve essere riportato al progettista.
- 9) L'Appaltatore dovrà garantire la stabilità delle strutture durante il sollevamento, il montaggio e in fase di getto e maturazione delle strutture in c.a. mediante opportune strutture provvisorie di sostegno o controvento.
- 10) Le fasi di sollevamento e montaggio e le strutture provvisorie dovranno essere sottoposte alla preventiva approvazione della D.L.
- 11) Dimensioni e posizioni di strutture esistenti riportate negli elaborati devono essere verificate da rilievi in situ e ogni incongruenza deve essere riportata al Progettista.
- 12) Tutte le forniture di materiali e componenti strutturali devono essere accompagnate dalla documentazione comprovante la provenienza, il controllo, la qualificazione e la certificazione dei materiali. Tale documentazione dovrà essere trasmessa alla D.L. prima della messa in opera delle strutture.
- 13) Il progetto esecutivo sarà soggetto a controllo della compatibilità geometrica del sistema strutturale, degli elementi, dei collegamenti bullonati e saldati, dei nodi in c.a..
- 14) Tolleranze dimensionali, costruttive, di fabbricazione e montaggio in accordo con le prescrizioni di uni EN 1090 e UNI EN 13670.
- 15) E' onere dell'Appaltatore la predisposizione dei disegni costruttivi, da sottoporre ad approvazione della D.L., riguardanti gli attacchi sugli elementi strutturali per elementi di baraccatura, per finiture (infissi, parapetti, tamponamenti, ecc.) e per impianti.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

- 16) Lo sviluppo e dimensionamento costruttivo dei particolari, dei collegamenti e delle connessioni sono a carico del costruttore dell'opera tenendo conto della concezione progettuale.
- 17) Non possono essere previsti fori negli elementi strutturali se non quelli esplicitamente riportati negli elaborati strutturali o approvati dal Progettista.
- 18) Gli elaborati costruttivi saranno soggetti ad approvazione della D.L. prima dell'inizio della produzione.
- 19) L'Appaltatore dovrà sottoporre alla preventiva approvazione della D.L. le procedure di realizzazione delle strutture in c.a. In elevazione e le tolleranze di verticalità conseguibili.
- 20) L'Appaltatore dovrà individuare e valutare le eventuali riprese di getto necessarie ed adottare le procedure atte a garantirne la realizzazione ad opera d'arte.
- 21) Nelle tavole di armatura non sono indicate le armature necessarie per il confezionamento delle gabbie.
- 22) L'adattamento degli schemi tipici di armatura in corrispondenza dei fori non indicati nelle tavole è a cura della D.L.
- 23) Le fasi dei getti, le procedure di getto e maturazione, unitamente agli additivi utilizzati per la preparazione del calcestruzzo devono essere tali da minimizzare la di fessurazione dovuta a ritiro.
- 24) Il progetto esecutivo delle parti prefabbricate é a carico del fornitore tenuto conto delle specifiche di progetto riportate nella relazione tecnica delle strutture. Se le carpenterie delle parti prefabbricate dovessero essere modificate, la necessaria ri-verifica in termini di compatibilità geometrica e meccanico-strutturale con le restanti parti del progetto è a carico dell'Appaltatore.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 22 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 5 Materiali strutturali

#### 5.1 Calcestruzzo

A ciascuna tipologia di elemento sono state associate la classe di esposizione (in accordo con le definizioni della norma UNI EN 206-1) e la classe di resistenza del calcestruzzo (scelta coerentemente con le classi definite dalle NTC 2018).

Calcestruzzi a "Prestazione garantita" conformi alle norme:

- UNI-EN 206:2016
- UNI 11104:2016
- UNI-EN 1992-1-1:2005 (EC2)

#### 5.1.1 Classi di esposizione del cls delle strutture di fondazione e di elevazione

Vedere la Relazione di calcolo delle opere in cemento armato e relative fondazioni.

Per le strutture di elevazione si assume (NTC 2018 Tab. 4.1.III e EN 206):

|                                  | Classe di esposizione                                                                                                                                                                                                                                                               | Condizioni<br>ambientali |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Strutture in elevazione protette | XC4: Ambiente con cicli alternati di bagnato/asciutto  (Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzo a vista in ambienti urbani. Superfici a contatto con l'acqua non compresa nella classe XC2). | Ordinarie                |

#### 5.1.2 Caratteristiche dei calcestruzzi a prestazione garantita

#### Calcestruzzo non armato per sottofondazioni

Conglomerato cementizio per pali di fondazione

Conglomerato cementizio per strutture di fondazione gettate in opera

Relazione di calcolo delle opere in cemento armato e relative fondazioni.

#### Conglomerato cementizio per soletta impalcato

Classe di resistenza: C32/40 con valore caratteristico minimo della resistenza cilindrica a

compressione dopo 28 giorni fck ≥ 32 MPa

Classe di consistenza: S5 Classe di esposizione: XC4

Dimensione massima nominale dell'aggregato: 8mm

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

 Data:
 Novembre 2023

 Pag. 23 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## Getti di completamento sotto le piastre di base dei pennoni

Si specifica l'impiego di malta di completamento tipo BASF MasterFlow 9200 (o equivalente) con le seguenti caratteristiche meccaniche:

| Mechanical properties:                                    |                           |                            |       |            |  |
|-----------------------------------------------------------|---------------------------|----------------------------|-------|------------|--|
| Compressive strength (40 x 40 x 160 mm prisms – EN 12190) | N/mm²                     | 20°C                       | 30°C  | <u>2°C</u> |  |
| <ul> <li>after 1 day</li> </ul>                           |                           | ≥ 55                       | ≥ 70  | ≥3         |  |
| <ul> <li>after 7 days</li> </ul>                          |                           | ≥ 80                       | ≥ 90  | ≥ 60       |  |
| - after 28 days                                           |                           | ≥ 110                      | ≥ 120 | ≥ 90       |  |
| Flexural strength (40 x 40 x 160 mm prisms – EN196-1)     | N/mm²                     | ≥ 14                       |       |            |  |
| Tensile splitting strength (EN12390-6) N/mm² ≥ 8          |                           |                            | ≥8    |            |  |
| Static modulus of elasticity (EN 13412)                   | GPa                       | ≥ 40                       |       |            |  |
| Capillary water absorption (EN 13057)                     | kg / m².h <sup>-0.5</sup> | <sup>0.5</sup> ≤ 0.05      |       |            |  |
| Drying shrinkage (EN 12617-4)                             | mm/m                      | ≤ 0.3                      |       |            |  |
| Crack resistance - Coutinho-ring                          |                           | no cracking after 180 days |       |            |  |
| Adhesion strength to concrete (EN 1542)                   | N/mm²                     | ≥2                         |       |            |  |
| Adhesion strength after freeze/thaw (EN 13687-1)          | N/mm²                     | ≥2                         |       |            |  |
| Pull-out strength of rebar (EN 1881)                      |                           |                            |       |            |  |
| displacement at 75kN load                                 | mm                        | ≤ 0.6                      |       |            |  |

#### 5.1.3 Copriferri

La determinazione del copriferro viene effettuata in conformità alle prescrizioni NTC2008 e EN1992-1-1 (copriferri per aderenza e durabilitá):

Per le strutture di fondazione:

Vedere la Relazione di calcolo delle opere in cemento armato e relative fondazioni.

Per le strutture in elevazione:

Copriferri per aderenza e durabilitá (NTC2008, EN1992-1-1)

Considerando una tolleranza di posa di 10 mm si ottiene:

| Elemento         | Cls    | Copriferro           | Valore richiesto |
|------------------|--------|----------------------|------------------|
| Armatura soletta | C32/40 | max(30mm, φb + 10mm) | 30mm             |

φb = diametro barra armatura

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 24 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.1.4 Assunzioni in tema di verifiche di fessurazione

#### Ai soli fini dei calcoli di apertura delle fessure:

- 1) gli effetti delle sollecitazioni meccaniche non vanno combinati con quelli di altri fattori (calore di idratazione, ritiro, ecc.);
- 2) il copriferro da assumere é quello minimo teorico secondo l'aggressivitá dell'ambiente (quest'ultimo definito coerentemente con le caratteristiche dei cls previsti);
- 3) l'apertura di fessura misurata va rilevata al filo dei copriferri teorici (se non misurabile va ricavata con considerazioni geometriche rispetto a quella misurabile a filo del copriferro effettivo).

Alla luce di quanto appena esposto si assume la seguente tabella dei

#### VALORI AMMESSI DI APERTURA FESSURE:

Validi per armature poco sensibili ai sensi del p.to 4.1.2.2.4.3 delle NTC 2018

|                       |                     | wlim adottato [mm]       |  |
|-----------------------|---------------------|--------------------------|--|
| Condizione ambientale | Comb. di carico SLE | e riferito al copriferro |  |
|                       |                     | minimo teorico           |  |
| Ordinaria             | Quasi Permanente    | w2 = 0.30                |  |
| Orumana               | Frequente           | w3 = 0.40                |  |

## 5.2 Acciaio in barre d'armatura per conglomerato cementizio armato

Barre longitudinali, staffe, spezzoni: B450C saldabile

Codice:

| Classe  | fyk    | ftk    | Es      | (fy/fy,nom)k | k = (ft/fy)k | σs,Rara | Diametro    | minimo    |
|---------|--------|--------|---------|--------------|--------------|---------|-------------|-----------|
| acciaio |        |        |         |              |              |         | mandrino di | piegatura |
| acciaio | [MPa]  | [MPa]  | [MPa]   |              | [MPa]        | [MPa]   | Φ≤16mm      | Φ>16mm    |
| B450C   | 450.00 | 540.00 | 210'000 | ≤ 1.25       | 1.15 - 1.35  | 360.00  | 4Ф          | 7Ф        |

Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto Documento:

REL\_6\_4 Pag. 25 di 49 Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 5.3 Acciaio per carpenteria metallica

Temperatura minima di servizio TEd:

Tmd (z=0m) = -15° (rif. NTC 2018 p.to 3.5.2 e Appendice nazionale UNI-EN 1991-1-5 Mappa delle temperature minime all'ombra a livello del mare).

#### 5.3.1 Acciaio da carpenteria

Profili aperti laminati a caldo secondo EN 10034 e EN 10025

S355 con valore caratteristico minimo della tensione a snervamento fyk  $\geq$  355 N/mm<sup>2</sup> Designazione europea: EN 10210-S 355

Definizione della sotto-classe/grado

Il grado J dell'acciaio va determinato in funzione della presenza o meno di saldature, dello spessore dei piatti saldati e della temperatura minima di servizio.

Facendo riferimento a EN1993-1-10 ed alla tabella 2.1, assumendo

- TEd = 15° per strutture non protette.
- $\sigma Ed = 0.25$  fy(t) per strutture compresse
- $\sigma Ed = 0.75$  fy(t) per le altre strutture

| Classe di      | Sotto- |                                        |    |     |     |                                        |     |     |     | Tem                                    | peratura | di riferim | ento T <sub>E</sub> | [°C] |     |     |     |     |     |     |     |     |     |   |
|----------------|--------|----------------------------------------|----|-----|-----|----------------------------------------|-----|-----|-----|----------------------------------------|----------|------------|---------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| acciaio        | classe | Charpy<br>KV                           | 1  | 10  | 0   | -10                                    | -20 | -30 | -40 | -50                                    | 10       | 0          | -10                 | -20  | -30 | -40 | -50 | 10  | 0   | -10 | -20 | -30 | -40 |   |
|                |        | $\sigma_{\rm Ed} = 0.75  t_{\rm s}(0)$ |    |     |     | $\sigma_{\rm Ed} = 0.50  f_{\rm y}(t)$ |     |     |     | $\sigma_{\rm Ed} = 0.25  f_{\rm y}(t)$ |          |            |                     |      |     |     |     |     |     |     |     |     |     |   |
|                | JR     | 20                                     | 27 | 60  | 50  | 40                                     | 35  | 30  | 25  | 20                                     | 90       | 75         | 65                  | 55   | 45  | 40  | 35  | 135 | 115 | 100 | 85  | 75  | 65  |   |
| S235           | JO     | 0                                      | 27 | 90  | 75  | 60                                     | 50  | 40  | 35  | 30                                     | 125      | 105        | 90                  | 75   | 65  | 55  | 45  | 175 | 155 | 135 | 115 | 100 | 85  |   |
|                | J2     | -20                                    | 27 | 125 | 105 | 90                                     | 75  | 60  | 50  | 40                                     | 170      | 145        | 125                 | 105  | 90  | 75  | 65  | 200 | 200 | 175 | 155 | 135 | 115 | 1 |
|                | JR     | 20                                     | 27 | 55  | 45  | 35                                     | 30  | 25  | 20  | 15                                     | 80       | 70         | 55                  | 50   | 40  | 35  | 30  | 125 | 110 | 95  | 80  | 70  | 60  | T |
|                | JO     | 0                                      | 27 | 75  | 65  | 55                                     | 45  | 35  | 30  | 25                                     | 115      | 95         | 80                  | 70   | 55  | 50  | 40  | 165 | 145 | 125 | 110 | 95  | 80  |   |
| \$275<br>\$355 | J2     | -20                                    | 27 | 110 | 95  | 75                                     | 65  | 55  | 45  | 35                                     | 155      | 130        | 115                 | 95   | 80  | 70  | 55  | 200 | 190 | 165 | 145 | 125 | 110 |   |
|                | M,N    | -20                                    | 40 | 135 | 110 | 95                                     | 75  | 65  | 55  | 45                                     | 180      | 155        | 130                 | 115  | 95  | 80  | 70  | 200 | 200 | 190 | 165 | 145 | 125 | 3 |
|                | ML,NL  | -50                                    | 27 | 185 | 160 | 135                                    | 110 | 95  | 75  | 65                                     | 200      | 200        | 180                 | 155  | 130 | 115 | 95  | 230 | 200 | 200 | 200 | 190 | 165 |   |
|                | JR     | 20                                     | 27 | 40  | 35  | 25                                     | 20  | 15  | 15  | 10                                     | 65       | 55         | 45                  | 40   | 30  | 25  | 25  | 110 | 95  | 80  | 70  | 60  | 55  | T |
|                | JO     | 0                                      | 27 | 60  | 50  | 40                                     | 35  | 25  | 20  | 15                                     | 95       | 80         | 65                  | 55   | 45  | 40  | 30  | 150 | 130 | 110 | 95  | 80  | 70  |   |
|                | J2     | -20                                    | 27 | 90  | 75  | 60                                     | 50  | 40  | 35  | 25                                     | 135      | 110        | 95                  | 80   | 65  | 55  | 45  | 200 | 175 | 150 | 130 | 110 | 95  |   |
|                | K2,M,N | -20                                    | 40 | 110 | 90  | 75                                     | 60  | 50  | 40  | 35                                     | 155      | 135        | 110                 | 95   | 80  | 65  | 55  | 200 | 200 | 175 | 150 | 130 | 110 | T |
| - 1            | ML,NL  | -50                                    | 27 | 155 | 130 | 110                                    | 90  | 75  | 60  | 50                                     | 200      | 180        | 155                 | 135  | 110 | 95  | 80  | 210 | 200 | 200 | 200 | 175 | 150 |   |
|                | M,N    | -20                                    | 40 | 95  | 80  | 65                                     | 55  | 45  | 35  | 30                                     | 140      | 120        | 100                 | 85   | 70  | 60  | 50  | 200 | 185 | 160 | 140 | 120 | 100 |   |
| S420           | ML,NL  | -50                                    | 27 | 135 | 115 | 95                                     | 80  | 65  | 55  | 45                                     | 190      | 165        | 140                 | 120  | 100 | 85  | 70  | 200 | 200 | 200 | 185 | 160 | 140 | 1 |
|                | Q      | -20                                    | 30 | 70  | 60  | 50                                     | 40  | 30  | 25  | 20                                     | 110      | 95         | 75                  | 65   | 55  | 45  | 35  | 175 | 155 | 130 | 115 | 95  | 80  | 1 |
|                | M,N    | -20                                    | 40 | 90  | 70  | 60                                     | 50  | 40  | 30  | 25                                     | 130      | 110        | 95                  | 75   | 65  | 55  | 45  | 200 | 175 | 155 | 130 | 115 | 95  |   |
| S460           | QL     | -40                                    | 30 | 105 | 90  | 70                                     | 60  | 50  | 40  | 30                                     | 155      | 130        | 110                 | 95   | 75  | 65  | 55  | 200 | 200 | 175 | 155 | 130 | 115 |   |
|                | ML,NL  | -50                                    | 27 | 125 | 105 | 90                                     | 70  | 60  | 50  | 40                                     | 180      | 155        | 130                 | 110  | 95  | 75  | 65  | 200 | 200 | 200 | 175 | 155 | 130 | 1 |
| 1              | QL1    | -60                                    | 30 | 150 | 125 | 105                                    | 90  | 70  | 60  | 50                                     | 200      | 180        | 155                 | 130  | 110 | 95  | 75  | 215 | 200 | 200 | 200 | 175 | 155 | 1 |
|                | Q      | 0                                      | 40 | 40  | 30  | 25                                     | 20  | 15  | 10  | 10                                     | 65       | 55         | 45                  | 35   | 30  | 20  | 20  | 120 | 100 | 85  | 75  | 60  | 50  | t |
|                | Q      | -20                                    | 30 | 50  | 40  | 30                                     | 25  | 20  | 15  | 10                                     | 80       | 65         | 55                  | 45   | 35  | 30  | 20  | 140 | 120 | 100 | 85  | 75  | 60  | T |
| 0000           | QL     | -20                                    | 40 | 60  | 50  | 40                                     | 30  | 25  | 20  | 15                                     | 95       | 80         | 65                  | 55   | 45  | 35  | 30  | 165 | 140 | 120 | 100 | 85  | 75  |   |
| S690           | QL     | -40                                    | 30 | 75  | 60  | 50                                     | 40  | 30  | 25  | 20                                     | 115      | 95         | 80                  | 65   | 55  | 45  | 35  | 190 | 165 | 140 | 120 | 100 | 85  | t |
| - 1            | QL1    | -40                                    | 40 | 90  | 75  | 60                                     | 50  | 40  | 30  | 25                                     | 135      | 115        | 95                  | 80   | 65  | 55  | 45  | 200 | 190 | 165 | 140 | 120 | 100 |   |
| 1              | QL1    | -60                                    | 30 | 110 | 90  | 75                                     | 60  | 50  | 40  | 30                                     | 160      | 135        | 115                 | 95   | 80  | 65  | 55  | 200 | 200 | 190 | 165 | 140 | 120 | 1 |

Per spessori fino a 35mm si assume grado J0.

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 26 di 49* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.3.2 Acciaio per tirafondi

Se non specificato nelle singole tavole:

Acciaio da carpenteria secondo EN 10025:

S355 con valore caratteristico minimo della tensione a snervamento fyk ≥ 355 N/mm²

Designazione europea: EN 10210-S 355 JO

Nel dimensionamento dei tirafondi ottenuti da barre in acciaio S355 si é assunto a favor di sicurezza una penalizzazione del 15% della resistenza a trazione in accordo con EN1993-1-8 p.to 3.6.1(3) (penalizzazione richiesta quando la filettatura non é conforme a EN 1990).

Barre in acciaio ad alta resistenza tipo Macalloy 1030 (o equivalenti)

Tensione ultima di rottura: 1030 N/mm2

Tensione corrispondente allo 0.1% di deformazione: 835 N/mm2

(vedere tabella successiva)

| Tabella 2: prop       | rietà meccanich                              | е                                     |                        |                                |
|-----------------------|----------------------------------------------|---------------------------------------|------------------------|--------------------------------|
| Grado                 | Massima resistenza<br>alla trazione nominale | Limite elastico<br>nominale allo 0,1% | Allungamento<br>minimo | Modulo elastico approssimativo |
|                       | N/mm²                                        | N/mm²                                 | %                      | kN/mm²                         |
| Macalloy 1030 25-40mm | 1030                                         | 835                                   | 6                      | 170*                           |
| Macalloy 1030 50-75mm | 1030                                         | 835                                   | 6                      | 205                            |
| Macalloy S1030        | 1030                                         | 835                                   | 10                     | 185                            |

<sup>\*</sup>Modulo secante di elasticità nell'intervallo 5 - 70% SLU

| Tabella 3: cario | chi caratteristici |                |               |                |
|------------------|--------------------|----------------|---------------|----------------|
| Diametro         | Carico             | di rottura     | Carico di p   | rova a 0,1%    |
| nominale         | Macalloy 1030      | Macalloy S1030 | Macalloy 1030 | Macalloy S1030 |
| mm               | kN                 | kN             | kN            | kN             |
| 20               |                    | 323            | -             | 262            |
| 25               | 506                | 506            | 410           | 410            |
| 26.5             | 569                | •              | 460           | *              |
| 32               | 828                | 828            | 670           | 670            |
| 36               | 1049               |                | 850           | -              |
| 40               | 1295               | 1295           | 1050          | 1050           |
| 50               | 2022               | 2022           | 1639          | 1639           |
| 75               | 4311               | -              | 3495          | -              |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 27 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.3.3 Acciaio per perni

Acciaio 30 CrNiMo 8 secondo EN 10083:

valore caratteristico minimo della tensione a snervamento fyk ≥ 700 N/mm²

valore caratteristico minimo della tensione a rottura fuk ≥ 900 N/mm²

#### 5.3.4 Bulloni

Collegamenti bullonati secondo UNI EN ISO 4016:2002

Bulloni "non a serraggio controllato":

In accordo con UNI EN 15048-1 e p.to 11.3.4.6.1 NTC 2018:

viti classe 8.8 e 10.9 (UNI EN ISO 898-1:2013)

dadi classe 8 e classe 10 (UNI EN 898-2:2012)

rondelle acciaio C50 temperato e rinvenuto HRC 32-40 (UNI EN 10083-2:2006)

Bulloni "a serraggio controllato":

In accordo con UNI EN 14399-1 e p.to 11.3.4.6.2 NTC 2018:

viti classe 8.8 e 10.9 (UNI EN 14399-1, 14399-3 e 14399-4)

dadi classe 8 e 10 (UNI EN 14399-3,14399-4)

rondelle durezza 300-370 HV (UNI EN 14399 parti 5 e 6)

Coppie di serraggio secondo D.M. 09/01/1996 e D.M. 14/01/2008

I bulloni devono essere montati con una rosetta sotto la testa della vite e una rosetta sotto il dado.

I bulloni dovranno essere contrassegnati con le indicazioni del produttore e la classe di resistenza.

I bulloni disposti verticalmente avranno la testa della vite rivolta verso l'alto e il dado verso il basso.

5.3.5 Saldature e processi di saldatura

Si veda NTC 2018 p.to 11.3.4.5.

Con riferimento alla Tab. il Costruttore deve essere certificato secondo la norma UNI EN ISO 3824:2006 parti 2,3 e 4 con i requisiti richiesti per il riferimento C della Tab. 11.3.XII

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 28 di 49

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.3.6 Protezione dalla corrosione

I profili chiusi a cassone devono avere le saldature continue tali da impedire le infiltrazioni di acqua (air and water tight) e quindi la formazione di un ambiente umido favorevole allo sviluppo di fenomeni corrosivi non controllabili.

Protezione dalla corrosione mediante zincatura a caldo, secondo UNI 5744 o ciclo di verniciatura secondo specifiche di capitolato.

Categoria ambientale (UNI EN ISO 14713): C2/C3;

Rischio di corrosione: Basso/Medio

Velocitá di corrosione: da 0.1 a 2 μmmZn/anno;

Prevedere intagli e/o fori nella opere di carpenteria metallica per permettere il drenaggio durante le operazioni di zincatura.

La tabella seguente, estratta da UNI EN ISO 14713, definisce l'applicazione e lo spessore medio del rivestimento zincato in funzione della frequenza di manutenzione.

| Durata tipica fino alla<br>prima manutenzione<br>Anni | Descrizione generale e applicazione                                                                                         | Spessore medio del<br>rivestimento su ciascuna superficie<br>µm (minimo) | Note<br>(al termine del prospetto 2) |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
| Molto lunga (≥ 20)                                    | Zincatura per immersione a caldo conforme alla ISO 1461                                                                     | da 45 a 85 <sup>a)</sup>                                                 | 1, 2, 3, 4                           |
|                                                       | Alluminio sigillato conforme alla ISO 2063                                                                                  | 100                                                                      | 4, 5, 6                              |
|                                                       | Alluminio a spruzzo, sigillato o non sigillato conforme alla ISO 2063                                                       | 100                                                                      | 1, 4, 5, 6                           |
|                                                       | Tubo zincato per immersione a caldo (per esempio, conforme alla EN 10240)                                                   | da 45 a 55ª)                                                             | 1, 2, 3, 4                           |
| Lungo (da 10 a < 20)                                  | Come sopra oppure:                                                                                                          |                                                                          |                                      |
|                                                       | Tubo zincato per immersione a caldo (per esempio, conforme alla EN 10240)                                                   | 25                                                                       | 1, 2, 3, 4, 9                        |
|                                                       | Zincatura per immersione a caldo conforme alla ISO 1461                                                                     | 25                                                                       | 1, 2, 3, 4, 9                        |
| Medio (da 5 a < 10)                                   | Come sopra, oppure:                                                                                                         |                                                                          |                                      |
|                                                       | Lamiera zincata per immersione a caldo Z275<br>(vedere EN 10142 o EN 10147 o ISO 4998):<br>lamiera zincata formata a freddo | 20                                                                       | 1, 9                                 |
|                                                       | Acciaio zincato per elettrodeposizione (in genere)                                                                          | 20                                                                       | 1, 9                                 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 29 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Protezione alla corrosione mediante ciclo di verniciatura:

- il sistema di verniciatura protettivo da adottare deve essere in accordo con uni en iso 12944-5:2019 sulla base della classe di corrosività atmosferica del sito e della durabilità richiesta del sistema di verniciatura;
- 2) con riferimento alla tabella 1 di UNI EN ISO 12944-2:2018, la classe di di corrosività atmosferica è assunta pari a "c3 media" (strutture in acciaio esposte);
- 3) la classe di durabilità del sistema di verniciatura protettivo è assunta pari ad "alta" (da 15 a 25 anni) in accordo con il par. 5.5 di UNI EN ISO 12944-1:2018;
- 4) il primer d'officina deve essere compatibile con il sistema di verniciatura adottato in accordo con le tabelle b.1 and table b.2 di UNI EN ISO 12944-5:2019;
- 5) il livello di degrado della verniciatura prima del primo importante intervento di manutenzione deve essere concordato fra le parti interessate e deve essere stabilito in conformità alle parti da 1 a 5 della ISO 4628, se non diversamente concordato.
- 5.3.7 Resilienza del materiale e proprietà attraverso lo spessore Classe dell'acciaio da carpenteria (valore Z)

In accordo con EN1991-1-10 p. 3.1, tavola 3.1 si assume classe 1.

Nella selezione degli assemblaggi o connessioni di acciaio, per la protezione contro lo strappo lamellare si raccomanda di considerare i seguenti aspetti:

- l'importanza della posizione in termini di tensione di trazione applicata e il grado di ridondanza;
- la deformazione nella direzione che attraversa lo spessore nell'elemento in cui è fatta la connessione. Questa deformazione è dovuta al ritiro del metallo della saldatura prodotto dal raffreddamento. Essa si incrementa molto dove gli spostamenti sono impediti da altre porzioni della struttura;
- la natura del particolare costruttivo del collegamento, in particolare collegamenti saldati a croce, a T e collegamenti d'angolo.
- proprietà chimiche del materiale sollecitato trasversalmente. In particolare, elevati livelli di zolfo, anche se inferiori ai normali limiti forniti delle norme di prodotto per acciai, possono incrementare lo strappo lamellare.

Si raccomanda che la suscettibilità del materiale sia determinata misurando la qualità della "duttilità attraverso lo spessore" secondo la EN 10164, che è espressa in termini di classi di qualità identificate da valori Z.

Una linea guida per evitare lo strappo lamellare durante la saldatura è fornita nella EN 1011-2.

Per i dettagli suscettibili di produrre tensioni di trazione applicate e/o indotte nella direzione dello spessore del materiale, la qualitá dell'acciaio (valore Z) deve essere definita in accordo con le reali ipotesi di fabbricazione definite nel progetto costruttivo e dei disegni d'officina elaborati dal Fornitore della carpenteria metallica.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 30 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 5.4 Lamiere grecate

Per lamiere collaboranti tipo Hi-Bond

Acciaio zincato tipo S280GD UNI EN 10346:2009

carico di rottura a trazione ≥ 360 N/mm²

carico caratteristico di snervamento ≥ 280 N/mm²

## 5.5 Connettori lamiera grecata-cls

Tipo Hilti x-hvb (o equivalenti) in acciaio al carbonio carico di rottura a trazione = 295-350 N/mm2

zincatura: spessore minimo 3mm

#### 5.6 Funi

Le funi chiuse sono costituite da fili di acciaio ad alta resistenza zincati a caldo.

Marcatura e lunghezza di taglio a 15°. i cavi sono misurati e marcati sotto la forza specificata.

Tolleranza di marcatura ± 2mm

Tolleranza di sistema ± 5mm

La zincatura e la duttilità dei fili sono in accordo con le EN-10264 classe a o altri standard richiesti.

Le caratteristiche principali di resitenza e della protezione anticorrosione dei fili sono conformi alla EN 12385-10.

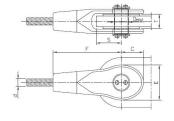
Resistenza del filo post-zincatura 1570 mpa min.

 $r_{p0,2}$  1180 mpa min.

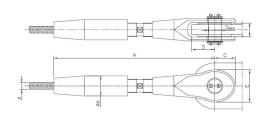
Allungamento dopo rottura 4% min. su una lunghezza di 250mm

Duttilita' del filo EN-10264

Zincatura EN-10264 (classe a)


Modulo di elasticitaà nominale E 163 000 MPa

Tipologie dei capicorda:


estremità superiore: capocorda a forcella;

estremità inferiore: capocorda a forcella regolabile.









Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Pag. 31 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Da prevedere un'adeguata protezione con lega di zinco/alluminio (i.e. composizione 95% zinco e 5% addizionale di alluminio) per funi ad alta resistenza in carbonio per garantire una vita di progetto di 50 anni.

Può essere adottata una protezione anticorrosione alternativa a quella di progetto purchè ufficialmente sottoposta ad un controllo in termini di durabilità.

La prestiratura è necessaria per rimuovere la deformazione iniziale elastica e per stabilizzare il modulo elastico del trefolo.

La prestiratura è eseguita con 5 o più cicli dal 10% al 50-60% della forza minima di rottura; dopo l'ultimo ciclo la forza viene mantenuta al valore massimo per un intervallo di tempo più lungo e poi regolata sul valore richiesto per la misurazione.

## 5.7 Apparecchi d'appoggio

Gli apparecchi d'appoggio sono previsti in corrispondenza degli imbocchi della passerella. Ad essi è assegnata la sola funzione di vincolo verticale essendo quella di vincolo orizzontale demandata a dettagli di ancoraggio in carpenteria metallica separati.

Per le caratteristiche richieste

Portata massima SLU: 300 kN

Spostamento massimo SLU: 100mm

Rotazione massima SLU: 1.6 deg.

possono essere previsti alternativamente

Apparecchi d'appoggio tipo "FIP – Vasoflon multidirezionale VM 50/100/50" (o equivalenti)

Dispositivi realizzati in carpenteria metallica come cilindri / bielle.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 32 di 49

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 6 Analisi dei carichi

## 6.1 Vita nominale dell'opera

Si assume vita nominale V<sub>N</sub>: 50 anni

#### 6.2 Aree di riferimento

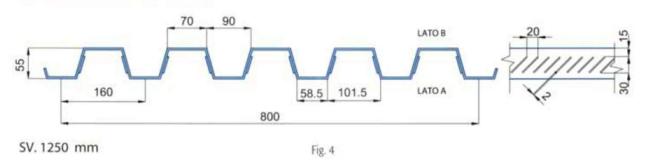
Superficie calpestabile della passerella = 294 m2

Superficie fronte passerella = 120 m2

## 6.3 Carichi permanenti

## 6.3.1 Pesi propri degli elementi strutturali

Il peso proprio degli elementi strutturali é assunto pari al loro volume e peso specifico corrispondente.


Per gli elementi in c.a. si assume  $\gamma$  = 25.00 kN/m3.

Per gli elementi in acciaio si assume  $\gamma$  = 78.50 kN/m3.

## 6.3.2 Carichi permanenti portati

| Voce                            | Descrizione                    | Valore     | Riferimento |
|---------------------------------|--------------------------------|------------|-------------|
| Manto di calpestio e passaggi   |                                | 0.70 kN/m2 | Superficie  |
| impiantistici                   |                                |            | calpestio   |
| Soletta mista lamiera grecata e | Tipo HEDAR HS 5580/6           | 2.06 kN/m2 | Superficie  |
| cls collaborante (passerella    | sp.10/10mm, soletta sp.55mm.   |            | calpestio   |
| principale)                     | Altezza totale 110mm           |            |             |
| Solaio tipo Predalle (rampe     | Altezza: 50 + 190 + 60 = 300mm | 5.40 kN/m2 | Superficie  |
| principale)                     |                                |            | calpestio   |
| Parapetto                       |                                | 0.50 kN/m2 | Superficie  |
|                                 |                                |            | parapetto   |

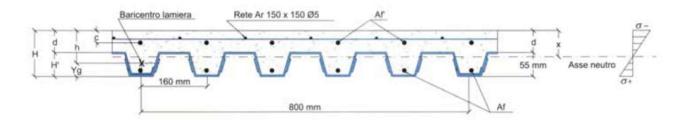
## LAMIERA GRECATA HS 5580/6



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023


 Pag. 33 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## LAMIERA GRECATA HS 5580/6 E CLS - H = 11 CM



## 6.4 Carichi variabili per ponti di 3° categoria

Rif.: p.ti 5.1.3.3.3 e 5.1.3.3.5 NTC 2018

Schema di carico 5: folla compatta

- intensitá nominale comprensiva di degli effetti dinamici : Qk = 5.00 kN/m2

- valore di combinazione:  $\psi$ 0 Qk = 2.50 kN/m2 da cui  $\psi$ 0 = 0.5

Carico complessivo:  $5.00 \text{ kN/m2} \times 294 \text{ m2} = 1470 \text{ kN}$ 

Schema di carico 4: carico isolato

- carico isolato da 10 kN con impronta quadrata di lato 0.10m.

Schema di carico: veicolo per operazioni di soccorso e/o manutenzione:

si ipotizza il passaggio a bassa velocità e non in concomitanza con la folla di un mezzo a 4 ruote con:

posizione in asse ponte

passo longitudinale ≥ 2.50m

passo trasversale ≥ 1.30m

impronta ruota: 200mm x 200mm

carico ruota: 17 kN

Azione orizzontale sui parapetti:

Rif.: p.to 5.1.3.10 NTC 2018

1.50 kN/m applicata al corrimano (altezza non inferiore a 1.10m).

#### 6.5 Azione convenzionale longitudinale

Si assume una azione convenzionale longitudinale pari al 10% dell'azione della folla, uniformemente distribuita sull'impalcato.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Pag. 34 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 6.6 Azione della neve

| Definizione geografica del sito                                |            |                  |
|----------------------------------------------------------------|------------|------------------|
|                                                                |            |                  |
| altitudine a <sub>s</sub> [m]                                  | 100        | OK               |
| Provincia                                                      | Bologna    | ▼                |
| Zona                                                           | Zona I - N | lediterranea     |
| Valore caratteristico q <sub>sk</sub> [kN/m2] con Tr = 50 anni | 1.50       |                  |
| Periodo di ritorno Tr [anni] (≥5)                              | 50         |                  |
| Coeff. variazione serie massimi annuali V [0.2-0.6]            | 0.4        | EN1991-1-3 app.D |
| Coeff. periodo di ritorno α <sub>Rn</sub>                      | 1.00       | EN1991-1-3 app.D |
| $q_{ref}(Tr) = \alpha_{Rn} \times q_{sk} [kN/m2]$              | 1.50       |                  |
| Coefficiente interazione termico Ct (1.0)                      | 1.0        |                  |
| Esposizione                                                    | Zona norm  | nale             |
| Coefficiente di esposizione C <sub>E</sub>                     | 1.00       |                  |
| Coefficiente termico C <sub>t</sub> (1.0)                      | 1.0        |                  |
| Carico neve q (per µ = 1.00) [kN/m2]                           | 1.50       |                  |

Coefficiente di forma:  $\mu$  = 0.8

Valore caratteristico del carico neve sull'impalcato:  $qsk = \mu q = 0.8 \times 1.50 \text{ kN/m2} = 1.20 \text{ kN/m2}$ 

Con rif. al p.to 5.1.3.7 NTC 2018 l'azionedella neve non è concomitante con quello della folla.

#### 6.7 Azioni idrodinamiche

Vedere la Relazione di calcolo delle opere in c.a. e relative fondazioni.

#### 6.8 Spinta delle terre

Vedere la Relazione di calcolo delle opere in c.a. e relative fondazioni.

## 6.9 Azioni della temperatura

Temperatura minima dell'aria esterna:

Test\_min (z=0m) = -15°C (rif. NTC 2018 p.to 3.5.2 e Appendice nazionale UNI-EN 1991-1-5 Mappa delle temperature minime all'ombra a livello del mare).

Temperatura massima dell'aria esterna:

Test\_max (z=0m) = +42°C (rif. NTC 2018 p.to 3.5.2 e Appendice nazionale UNI-EN 1991-1-5 Mappa delle temperature minime all'ombra a livello del mare).

Incremento della temperatura per il contributo dell'irraggiamento solare:

 $\Delta$ Tirr = +30°C (rif. NTC 2018 p.to 3.5.2, superfici chiare, esposte a Sud-Ovest e orizzontali)

Range delle temperature minima e massima della struttura:

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023

Pag. 35 di 49



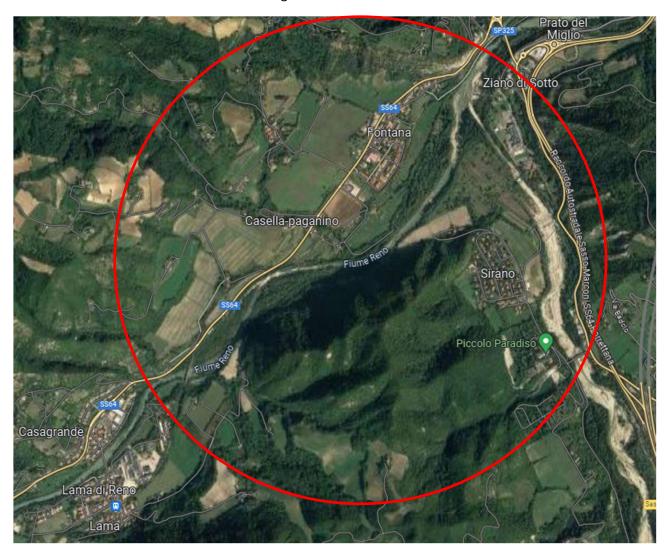
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Tmin = 
$$-15$$
°C

$$Tmax = +42^{\circ}C + 30^{\circ}C = 72^{\circ}C$$

Valore caratteristico della variazione termica: assumendo T\_iniziale = +15°C


$$\Delta T$$
+ = +72°C - 15°C = +57°C  $\Delta T$ - = -15°C - 15°C = -30°C

#### 6.10 Azione del vento

L'azione del vento é stata modellata come azione statica equivalente utilizzando la trattazione proposta in NTC 2018 e EN1991-1-4.

Definizione geografica del sito: in accordo con NTC 2018

L'immagine seguente riporta un estratto da Google Maps dell'area circostante il sito con evidenziazione dell'area posta entro R = max(1 km, 20 x altezza della costruzione) = max (1000m, 20x35m) = 1000m dal sito al fine della determinazione della classe di rugositá.



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 36 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Si puó osservare che la classe di rugositá é essenzialmente riconducibile alla D ("Aree prive di ostacoli o con al più rari ostacoli") per il settore di 180 deg che si estende dalla direzione NE a SO. Il settore opposto mostra la presenza del fianco di un rilievo. Per tale settore si fa riferimento all'appendice D del documento CNR-DT-207-R1-2018 che permette di valutare il coefficiente di topografia Ct.

Con riferimento alla figura riportata nella pagina successiva:

Non si conoscono le caratteristiche geometriche del rilievo (H, Lu, Ld). Comunque l'opera non si trova sul pendio (da cui z / Le  $\cong$  0) e ad una certa distanza dalla sua base.

Caso 1: vento da NO:

$$x/Lu < -1.1$$
  $\rightarrow s \le 0.05$ 

Caso 2: vento da SE:

$$x/Ld = 1.1$$
 (a favor di sicurezza)  $\rightarrow$  s  $\leq$  0.12

e facendo riferimento al caso più severo in funzione di  $\Phi$  (Caso D.1c  $\Phi \ge 0.3$ )

$$c_t = 1$$
 per  $\Phi \le 0.05$  (D.1a)

$$c_t = 1 + 2 \cdot s \cdot \Phi$$
 per  $0,05 < \Phi < 0,3$  (D.1b)

$$c_{\star} = 1 + 0, 6 \cdot s$$
 per  $\Phi \ge 0, 3$  (D.1c)

dove:

s è il fattore di posizione orografica fornito dalla Figura D.1, per i pendii, e dalla Figura D.2, per le colline, in funzione delle coordinate x e z; in alternativa, esso è fornito dalle espressioni elencate al paragrafo D.2;

 $\Phi$  =  $H/L_u$ , è la pendenza media del fronte del rilievo esposto al vento;

H è l'altezza del rilievo;

 $L_u$  è la lunghezza (in orizzontale) del fronte del rilievo esposto al vento;

*Le* è la lunghezza effettiva (in orizzontale) del fronte del pendio esposto al vento:

 $L_e = L_u \text{ per } \Phi \leq 0.3;$ 

 $L_e = H/0.3 \text{ per } \Phi > 0.3$ ;

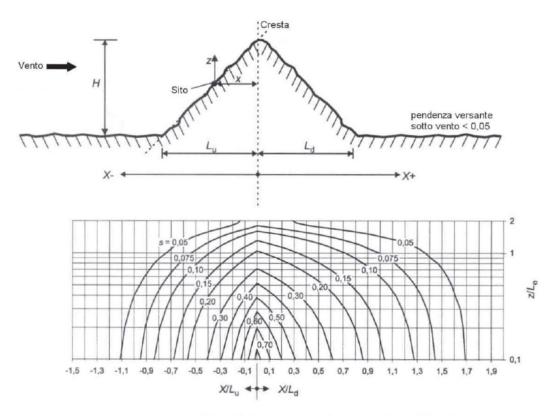
 $L_d$  è la lunghezza (in orizzontale) del fronte sotto vento della collina;

x è la distanza (in orizzontale) della costruzione dalla sommità del rilievo;

z è l'altezza sul suolo.

si ottiene coefficiente di topografia  $ct = 1 + 0.6 \times 0.12 = 1.07$ 

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 37 di 49

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



**Figura D.2** - Fattore di posizione orografica *s* per le colline isolate.

### 6.10.1 Coefficiente dinamico Cd (o CsCd)

Il coefficiente CsCd tiene conto dell'eventuale amplificazione dinamica mediata dalla non contemporaneitá dei picchi.

Il procedimento semplificato proposto nell'annesso B di EN1991-1-4 (vedere di seguito) propone un valore di CsCd unitario:

# **Decremento logaritmico smorzamento:** (Annex F, p.to 5)

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 38 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### smorzamento totale (F.15)

 $\delta = \delta s + \delta a \qquad \qquad 0.066$ 

dimensioni geom. struttura

b [m] 3.5 h [m] 40.0

frequenza fondam. di vibrazione [Hz] n1 1.270

Frequenza a-dimensionale (B.1(2))

 $f_L(zs,n1)$  2.976

Densita' adim. potenza spettrale (B.2)

 $S_L(ze,n1)$  0.064912

Frequenza attesa (B.5)

v [Hz] 0.7685

Fattore di picco (B.4)

kp 3.674

### Fattore di struttura c<sub>s</sub>c<sub>d</sub>: (Annex B)

altezza di riferimento

zs [m] 10.0

decr. log. smorzamento  $\delta \hspace{1.5cm} \textbf{0.066}$ 

velocita' media

Vm(zs) [m/s] 26.95

intensita' turbolenza

lv(zs) 0.1764

altezza di riferimento zt [m] 200 scala lunghezza di riferimento Lt [m] 300  $\alpha$  (B.1(1)) 0.5202

scala integrale turbolenza

L(zs) [m] (B.1) 63.14

Fattore di background B<sup>2</sup> (B.3) 0.584

Funzione di ammettenza aerodinamica orizzontale ηh 8.671

Rh (B.7) 0.108672

Funzione di cross-correlazione orizzontale

ηb 0.759 Rb (B.8) 0.63988 Fattore di risposta risonante R² (B.6) 0.337

cs (6.2) 0.8698 cd (6.3) 1.1546

Fattore di struttura c<sub>s</sub>c<sub>d</sub>: 1.00

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 39 di 49* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### Definizione geografica del sito:

| Zona [1> 9] Classe rugosita' [A> D] distanza dalla costa [km] (10;40) altitudine as [m] (500;750) Categoria di esposizione [I> V]     |                       | 2<br>D<br>100<br>100.0<br>II            |                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|
| Periodo di ritorno (T <sub>R</sub> ) [anni]<br>coeff. topografia<br>coeff. dinamico cd                                                |                       | 50<br>1.07<br>1.000                     |                                                                                                 |
| Vb,0 [m/s] ao [m] ks [1/s] kr zo [m] zmin [m]                                                                                         |                       | 25<br>750<br>0.45<br>0.2<br>0.1<br>5.00 | da Zona 2<br>da Zona 2<br>da Zona 2<br>da Categoria III<br>da Categoria III<br>da Categoria III |
| α <sub>R</sub> (T <sub>R</sub> ) (secondo Circ. NTC 2018)<br>velocita' di riferimento Vb [m/s]<br>press. cinetica di rifer. qb [N/m2] | 1.00<br>25.0<br>391.2 |                                         |                                                                                                 |

Valore della pressione del vento al variare della quota z e con coefficiente di pressione cp unitario:

| altezza  | pressione<br>vento       | coeff.<br>esposizione<br>pressioni | profilo altim.       | velocita' media               | coeff.<br>esposizione<br>velocita' | velocita' picco               |
|----------|--------------------------|------------------------------------|----------------------|-------------------------------|------------------------------------|-------------------------------|
|          |                          |                                    | = $ln(z/z_0)$ z>zmin | = $k_r c_t \alpha(z) V_b$     |                                    | = $c_{ev} V_{ref}$            |
| z<br>[m] | $p(z) = c_p q(z)$ [N/m2] | $C_{e}(Z)$                         | <b>α(z)</b>          | v <sub>m</sub> (z)<br>[m/sec] | $C_{ev}(Z)$                        | v <sub>p</sub> (z)<br>[m/sec] |
| 4.0      | 774                      | 1.978                              | 4.382                | 22.29                         | 1.407                              | 35.19                         |
| 10.0     | 1014                     | 2.593                              | 5.298                | 26.95                         | 1.610                              | 40.29                         |
| 15.0     | 1129                     | 2.887                              | 5.704                | 29.01                         | 1.699                              | 42.51                         |
| 20.0     | 1214                     | 3.104                              | 5.991                | 30.47                         | 1.762                              | 44.08                         |
| 25.0     | 1282                     | 3.277                              | 6.215                | 31.61                         | 1.810                              | 45.29                         |
| 30.0     | 1338                     | 3.421                              | 6.397                | 32.54                         | 1.850                              | 46.27                         |
| 35.0     | 1387                     | 3.545                              | 6.551                | 33.32                         | 1.883                              | 47.11                         |

Si ricava la pressione del vento (associate a coefficiente di pressione unitario) agente su:

| impalcato (z = 10m) | 1.01 | kN/m2 |
|---------------------|------|-------|
| pilone (z = 35m)    | 1.39 | kN/m2 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 40 di 49* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### IMPALCATO – Azione verticale

Coefficienti di pressione e depressione. Con riferimento a EN1991-1-4 p.to 8.3.3:

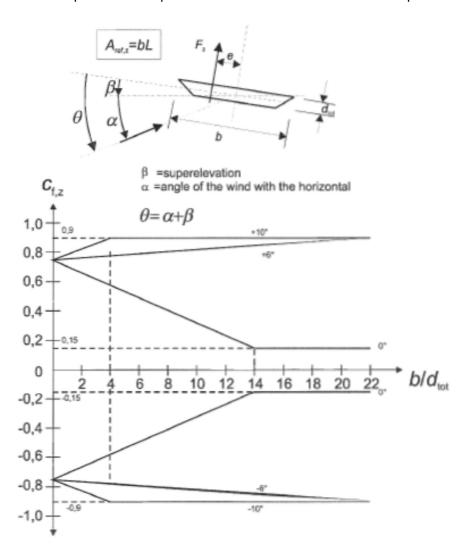



Figure 8.6 — Force coefficient ct.x for bridges with transversal slope and wind inclination

| larghezza impalcato | b    | da 3 a 4 | m     |
|---------------------|------|----------|-------|
| spessore impalcato  | d    | 0.5      | m     |
|                     | b/d  | da 6 a 8 |       |
| Coefficiente        | Cf,z | +/-0.5   |       |
|                     | pz   | +/-0.50  | kN/m2 |

### <u>IMPALCATO – Azione orizzontale</u>

Spinta orizzontale su impalcato

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag.* 41 *di* 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Altezza (0.65m + 50% Hparapetto) h 1.2 m

Coefficiente Cp 1.00

p 1.21 kN/m

PILONE - Azione orizzontale

Coefficiente di pressione Cp 2.8 Punto C3.3.8.7 della circolare alle NTC 2018

Larghezza (media) B 1 m
Carico laterale p 3.89 kN/m

### 6.11 Azione del sisma

La progettazione sismica si basa sull'ipotesi di strutture con comportamento non dissipativo. Sotto tale ipotesi, nella valutazione della domanda tutte le membrature e i collegamenti rimangono in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce, ma indipendentemente dalla tipologia strutturale e senza tener conto delle non linearità del materiale, attraverso un modello elastico.

Secondo quanto riportato dal paragrafo 7.2.2 delle NTC 2018, la componente verticale deve essere considerata.

Vista la particolare tipologia della struttura che non rientra nelle casistiche individuate dalla normativa, che permettono (per la componente orizzontale) di considerare un valore del fattore di struttura qH > 1, si considera cautelativamente qH = 1.0.

Per la componente verticale la norma impone qV = 1.0.

### 6.11.1 Spettri in accordo con TU 2018

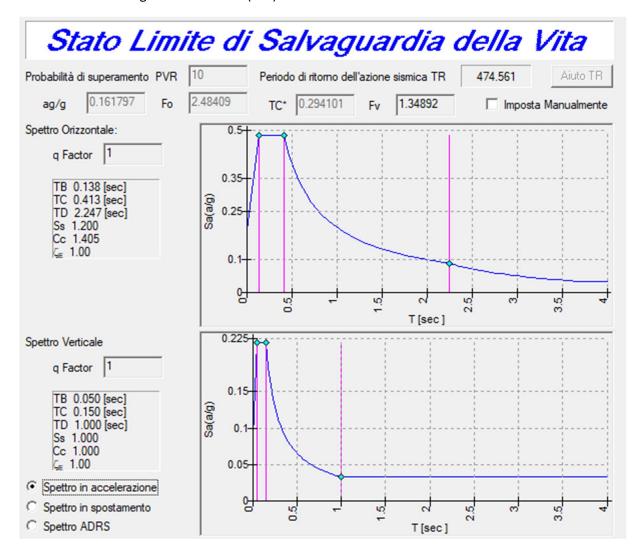
- Sasso Marconi (BO) Longitudine 11.2326 deg Latitudine 44.3769 deg
- Tipo di Terreno B
- Coefficiente di amplificazione topografica (ST) 1.0000
- Vita nominale della costruzione (VN) 50.0 anni
- Classe d'uso II coefficiente CU 1.0
- Classe di duttilità: Non Dissipativa

| Stato  | qн   | qv   |  |
|--------|------|------|--|
| Limite |      |      |  |
| SLV    | 1.00 | 1.00 |  |
| SLD    | 1.00 | 1.00 |  |
| SLO    | 1.00 | 1.00 |  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023


 Pag. 42 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

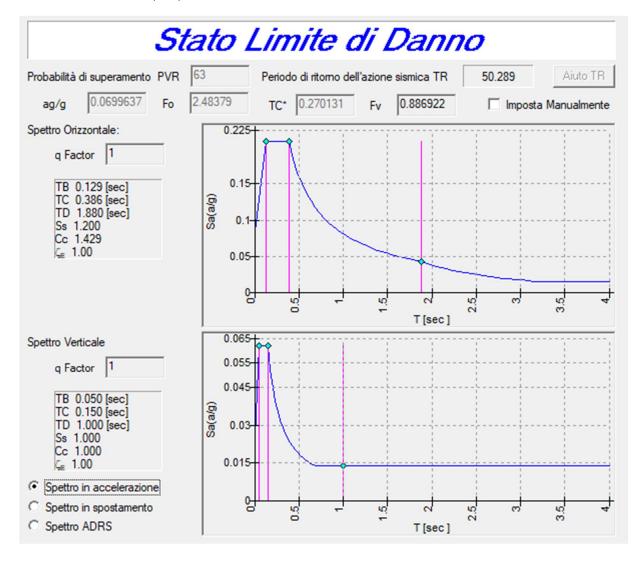
### Stato Limite di Salvaguardia della Vita (SLV)



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023


 Pag. 43 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

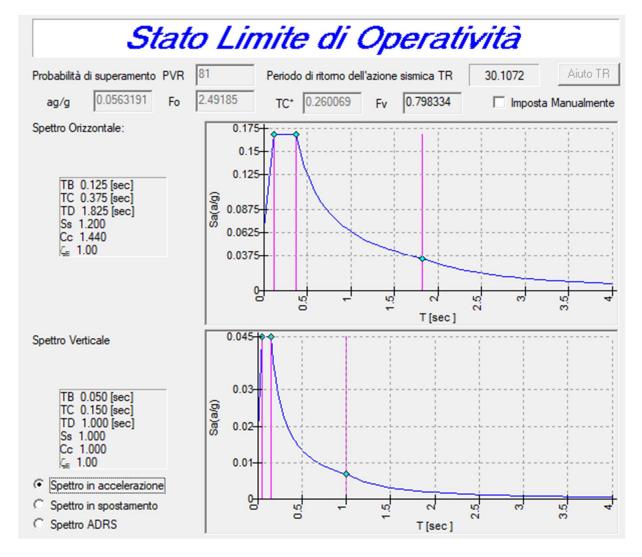
### Stato Limite di Danno (SLD)



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023


 Pag. 44 di 49



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### Stato Limite di Operatività (SLO)



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 45 di 49

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 6.12 Combinazioni di carico

Operando in accordo con il metodo agli stati limite descritto nelle NTC 2018 per i ponti (cap. 5), vengono prese in considerazione le seguenti tipologie di combinazioni di carico:

### COMBINAZIONI SLU STATICHE

$$F_{d} = \gamma_{G1}G_{K1} + \gamma_{G2}G_{K2} + \gamma_{Q1}Q_{K1} + \sum_{i=2} \psi_{0i}\gamma_{Qi}Q_{Ki}$$

|                                              | Sfavorevoli alla | Favorevoli alla |
|----------------------------------------------|------------------|-----------------|
|                                              | sicurezza        | sicurezza       |
| γ <sub>G1</sub>                              | 1.35             | 1.00            |
| γ <sub>G2</sub>                              | 1.50             | 0.00            |
| γ <sub>Q</sub> (escluso carichi da traffico) | 1.50             | 0.00            |
| γ <sub>Q</sub> (da traffico)                 | 1.35             | 0.00            |

### Coefficienti di partecipazione ψ<sub>i</sub> delle azioni variabili:

| Azione                           | Ψ0  | Ψ1  | Ψ2  |
|----------------------------------|-----|-----|-----|
| Qk (escluso carichi da traffico) | 0.7 | 0.7 | 0.6 |
| Folla (*)                        | 0.7 | 0.0 | 0.0 |
| Neve (**)                        | 0.5 | 0.2 | 0.0 |
| Vento (***)                      | 0.6 | 0.2 | 0.0 |
| ΔΤ                               | 0.6 | 0.6 | 0.0 |

<sup>(\*)</sup> Folla: a favor di sicurezza si assumo il coefficiente  $\psi_0$  previsto per Cat. C (suscettibili di affollamento)

(\*\*) Neve: a favor di sicurezza (i valori richiesti sono nulli)

(\*\*\*) Vento a ponte scarico (caso peggiore)

### COMBINAZIONI SLU/SLD SISMICHE

$$F_d = A_{Ed} + G_K + \sum_i \psi_{2i} Q_{Ki}$$

Masse calcolate come

$$G_K + \sum_i \psi_{2i} Q_{Ki}$$

### **COMBINAZIONI SLE**

Rare o caratteristiche

$$F_d = G_{K1} + G_{K2} + Q_{K1} + \sum_{i=2} \psi_{0i} Q_{Ki}$$

Frequenti 
$$F_{d} = G_{K1} + G_{K2} + \psi_{1,1}Q_{K1} + \sum_{i=2} \psi_{2i}Q_{Ki}$$

o Quasi permanenti:

$$F_d = G_{K1} + G_{K2} + \sum_{i=1} \psi_{2i} Q_{Ki}$$

Le combinazioni di carico prese in esame sono specificate negli annessi dedicati all'analisi dei modelli matematici.

Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto Documento:

Codice: REL\_6\_4 Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 7 Analisi strutturale

L'analisi della risposta strutturale all'azione dei carichi di base e delle sue probabili combinazioni, é stata eseguita mediante il metodo dell'equilibrio o degli spostamenti.

La maggiore parte delle analisi é stata eseguita mediante elaborazione assistita da computer con procedure interattive grafiche e software indirizzato all'ingegneria civile redatto e controllato in accordo alle CNR-UNI 10024/86 "Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo" e al capitolo 10 delle NTC 2018.

Il programma di analisi strutturale adottato in campo lineare elastico è lo STRAND di Enexsys le cui specifiche generali, librerie di elementi finiti e capacità di modellazione delle azioni, materiali e schematizzazione della struttura e dei vincoli sono illustrate nell'Allegato Z dedicato.

Dove ritenuto necessario é stato eseguito un giudizio motivato di accettabilità dei risultati automatici mediante analisi comparativa eseguita con modelli semplificati.

### 7.1 Metodo di analisi degli effetti dell'azione sismica

Il metodo di analisi utilizzato per la valutazione delle sollecitazioni prodotte dal sisma é l'analisi dinamica modale. Il modello della struttura adottato é tridimensionale e rappresenta in modo adeguato le effettive distribuzioni spaziali di massa,

Per i materiali si adottano leggi costitutive elastiche.

Nel rappresentare la rigidezza degli elementi strutturali si é tenuto conto della fessurazione riducendo la rigidezza flessionale e a taglio degli elementi in calcestruzzo armato fino al 50% della rigidezza dei corrispondenti elementi non fessurati, tenendo debitamente conto dello stato limite considerato e dell'influenza della sollecitazione assiale permanente.

Si considerano 3 direzioni d'ingresso del sisma:

X (asse longitudinale)

Y (asse longitudinale trasversale)

Z (asse verticale)

La risposta all'azione sismica è calcolata unitariamente per le due componenti, applicando l'espressione

Ex + 0.30 Ey + 0.30 Ez

permutando circolarmente i coefficienti moltiplicativi (l'elenco delle specifiche combinazioni é riportato negli allegati dedicati ai singoli modelli matematici).

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Pag. 47 di 49* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 7.2 Rispetto dei requisiti nei confronti degli stati limite

Per tutti gli elementi strutturali primari e secondari, gli elementi non strutturali e gli impianti si deve verificare che il valore di ciascuna domanda di progetto, definito dalla tabella 7.3.III seguente per ciascuno degli stati limite richiesti, sia inferiore al corrispondente valore della capacità di progetto.

| Tab. 7.3.III | Tab. 7.3.III – Stati limite di elementi strutturali primari, elementi non strutturali e impianti |     |         |      |     |         |             |                   |
|--------------|--------------------------------------------------------------------------------------------------|-----|---------|------|-----|---------|-------------|-------------------|
|              |                                                                                                  | CUI |         | CUII |     |         | CU III e IV |                   |
| STATI LIMITE |                                                                                                  | ST  | ST      | NS   | IM  | ST      | NS          | IM <sup>(*)</sup> |
| SLE          | SLO                                                                                              |     |         |      |     | RIG     |             | FUN               |
| SLE          | SLD                                                                                              | RIG | RIG     |      |     | RES     |             |                   |
| CIII         | SLV                                                                                              | RES | RES     | STA  | STA | RES     | STA         | STA               |
| SLU          | SLC                                                                                              |     | DUT(**) |      |     | DUT(**) |             | ·                 |

<sup>(</sup>º) Per le sole CU III e IV, nella categoria Impianti ricadono anche gli arredi fissi.

# 7.3 Modalitá di calcolo delle capacitá degli elementi in c.a. con riferimento al loro comportamento elastico in ambito sismico

Avendo adottato l'ipotesi di comportamento non dissipativo, nel calcolo delle capacitá degli elementi in c.a. si assume un comportamento sostanzialmente elastico (vedere NTC 2018 7.3.6.1).

Il comportamento sostanzialmente elastico viene rappresentato, in accordo con quanto specificato nel p.to 4.1 delle NTC 2018, adottando per i materiali cls e acciaio d'armatura dei diagrammi costitutivi privati del ramo plastico:

per l'acciaio il diagramma  $\sigma$ - $\epsilon$  quindi é limitato al ramo elastico:  $-fyd \le \sigma \le +fyd$  per  $\epsilon$  compreso tra  $\epsilon$  yd  $\epsilon$  + $\epsilon$ yd;

per il cls il diagramma  $\sigma$ - $\epsilon$  quindi é limitato al ramo  $0 \le \epsilon c \le 0.2\%$ .

### 7.4 Effetti delle imperfezioni

In accordo con quanto specificato nel p.to 4.2.3.5 delle NTC 2018, sono stati considerati gli effetti delle imperfezioni geometriche nelle strutture compresse ai fini del dimensionamento delle strutture di controvento.

### 7.5 Valori di calcolo delle resistenze dei materiali strutturali

I valori di calcolo Xd (= Xk /  $\gamma$ M) dei materiali sono desunti dai corrispondenti valori caratteristici Xk mediante le formulazioni e l'impiego dei coefficienti di sicurezza  $\gamma$ M prescritti nelle NTC 2018.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 48 di 49

<sup>(\*\*)</sup> Nei casi esplicitamente indicati dalle presenti norme.



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 7.6 Progettazione di elementi costruttivi non strutturali

Per le strutture di sostegno e relativi dettagli di attacco de:

- a) gli eventuali paramenti esterni;
- b) gli elementi appesi/collegati all'impalcato e ai piloni;

il dimensionamento é a carico del Fornitore in accordo con le azioni di progetto:

- 1) verticali (peso proprio, peso portato, eventuale azione variabile);
- 2) orizzontali (spinta del vento, azione sismica quest'ultima determinata in accordo con il par.7.2.3 delle NTC 2018).

# 7.7 Dimensionamento delle ampiezze del giunto longitudinale tra l'impalcato e la pila destra

Il vincolo longitudinale è localizzato sulla spalla sinistra mentre in corrispondenza delle pile sono ammessi i movimenti longitudinali. Sulla pila destra è localizzato il giunto longitudinale con escursione  $\Delta X = \pm 100$ mm.

## 8 Allegati e altri documenti

Allegati alla Relazione Tecnica

| Nome       | Titolo                                                                                                                                                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allegato 1 | Passerella - Descrizione del modello matematico elastico lineare e dei principali risultati dell'analisi statica e dinamica – Verifiche della struttura metallica principale                                                              |
| Allegato 2 | Rampe - Descrizione del modello matematico elastico lineare e dei principali risultati dell'analisi statica e dinamica – Verifiche della struttura in elevazione                                                                          |
| Allegato Z | Enexsys WinStrand - Programmi di calcolo strutturale: descrizione delle specifiche generali, librerie di elementi finiti e capacità di modellazione delle azioni, materiali e schematizzazione della struttura e dei vincoli, convenzioni |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Pag. 49 di 49

# Passerella ciclopedonale fiume Reno – Sasso Marconi

# **Progetto Definitivo**

# Relazione tecnica delle strutture metalliche ALLEGATO 1

STR\_REL\_6\_4



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### **Sommario**

| 1     | Premessa                                                                                 | 4  |
|-------|------------------------------------------------------------------------------------------|----|
| 2     | Descrizione del modello matematico                                                       | 4  |
| 2.1   | Premessa                                                                                 | 4  |
| 2.2   | Viste e numerazioni                                                                      | 4  |
| 2.3   | Materiali e sezioni                                                                      | 12 |
| 2.3.1 | Materiali                                                                                | 12 |
| 2.3.2 | Sezioni                                                                                  | 12 |
| 2.4   | Carichi e azioni                                                                         | 15 |
| 2.5   | Condizioni e combinazioni di carico                                                      | 16 |
| 3     | Principali risultati dell'analisi frequenziale                                           | 22 |
| 4     | Principali risultati dell'analisi statica e dinamica                                     | 28 |
| 4.1   | Deformate e spostamenti                                                                  | 28 |
| 4.2   | Sollecitazioni                                                                           | 42 |
| 4.3   | Scarichi in fondazione                                                                   | 56 |
| 4.3.1 | Reazione globale                                                                         | 56 |
| 4.3.2 | Reazione globale Spalla sinistra                                                         | 58 |
| 4.3.3 | Reazione globale Pila centrale                                                           | 61 |
| 4.3.4 | Reazione globale Pila destra                                                             | 63 |
| 5     | Verifiche                                                                                | 66 |
| 5.1   | Verifiche di deformabilità                                                               | 66 |
| 5.2   | Verifiche di comfort vibrazionale dei pedoni                                             | 67 |
| 5.3   | Dimensionamento delle ampiezze del giunto longitudinale tra l'impalcato e la pila destra | 67 |
| 5.4   | Verifica di resistenza delle membrature in acciaio                                       | 68 |
| 5.4.1 | Trave reticolare spaziale - Aste                                                         | 68 |
| 5.4.2 | Trave reticolare spaziale - Nodi                                                         | 69 |
| 5.4.3 | Pennoni                                                                                  | 75 |
| 5.4.4 | Funi                                                                                     | 77 |
| 5.4.5 | Corrimano                                                                                | 77 |
| 5.5   | Verifica di resistenza soletta mista lamiera grecata -cls                                | 77 |
| 5.5.1 | Verifica in presenza di folla (dalle tabelle del Produttore)                             | 78 |
| 5.5.2 | Verifiche in presenza di folla (calcoli di massima)                                      | 78 |
| 5.5.3 | Verifiche in fase di getto                                                               | 79 |
| 5.5.4 | Verifiche in presenza di mezzo a 4 ruote                                                 | 80 |
|       |                                                                                          |    |



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 6   | Stima delle quantità                            | . 84 |
|-----|-------------------------------------------------|------|
| 6.1 | Trave reticolare spaziale                       | . 84 |
| 6.2 | Impalcato, montanti e corrimano                 | . 84 |
| 6.3 | Pennoni                                         | . 85 |
| 6.4 | Funi e capicorda                                | . 86 |
| 6.5 | Solaio misto lamiera grecata e cls collaborante | . 86 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembre 2023

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

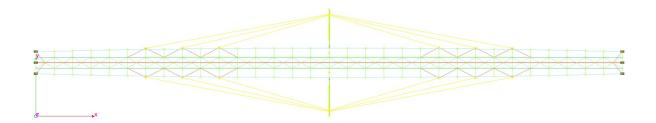
### 1 Premessa

Il presente documento costituisce un Allegato della Relazione Tecnica delle strutture della Passerella ciclopedonale sul fiume Reno e contiene i principali risultati dell'analisi statica e dinamica condotta sul modello matematico della parte in elevazione della passerella.

### 2 Descrizione del modello matematico

### 2.1 Premessa

Sono stati sviluppati due modelli matematici:


- 1) Modello senza schematizzazione della soletta dell'impalcato ("2023-11-07 Modello passerella No Isolatori NO massa folla CatB CatII R1.dt").
- 2) Modello con schematizzazione della soletta dell'impalcato ("2023-11-07 Modello passerella No Isolatori Con soletta NO massa folla CatB CatII R1.dt").

Il primo modello è stato utilizzato per le verifiche di resistenza delle membrature metalliche.

Il secondo modello è stato utilizzato per ricavare:

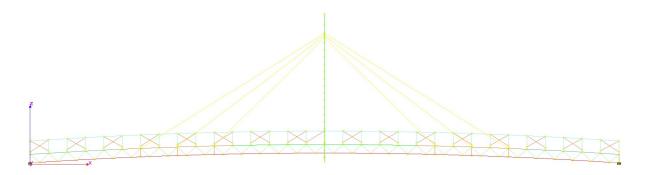
- le frequenze naturali di vibrazione (più realistiche rispetto all'altro modello) per le verifiche preliminari sul comfort
- le reazioni vincolari (quelle delle combinazioni sismiche oltre che più realistiche sono a favor di sicurezza in quanto associate a periodi di vibrazione minore) per il dimensionamento dei dispositivi di vincolo e delle strutture di sostegno in c.a..

### 2.2 Viste e numerazioni

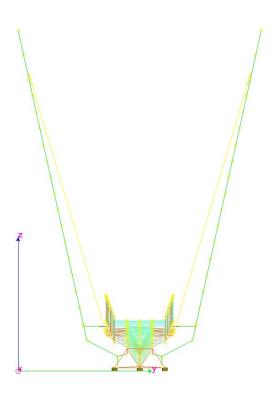


Pianta

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 4 di 87* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

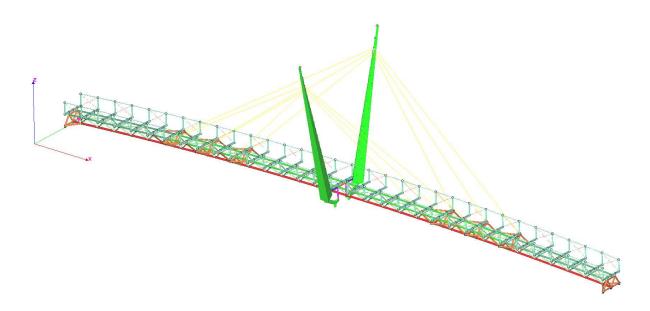


Vista laterale

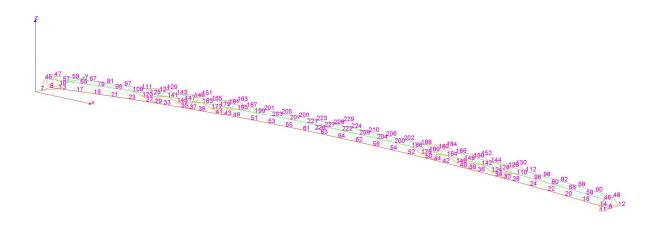


Vista frontale

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 5 di 87




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Vista solida assonometrica



Numerazione nodale trave reticolare spaziale

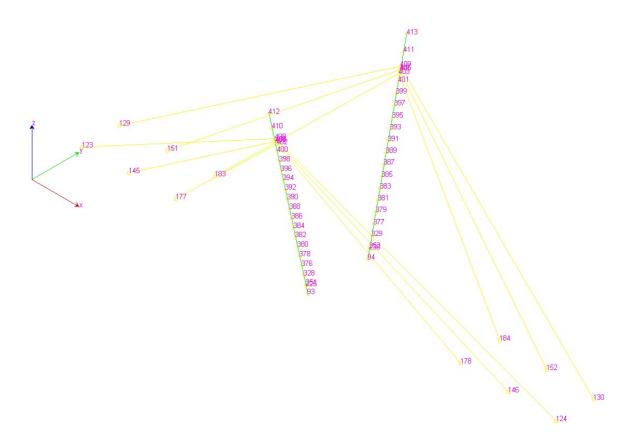


Numerazione nodale estradosso trave reticolare spaziale

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 6 di 87




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

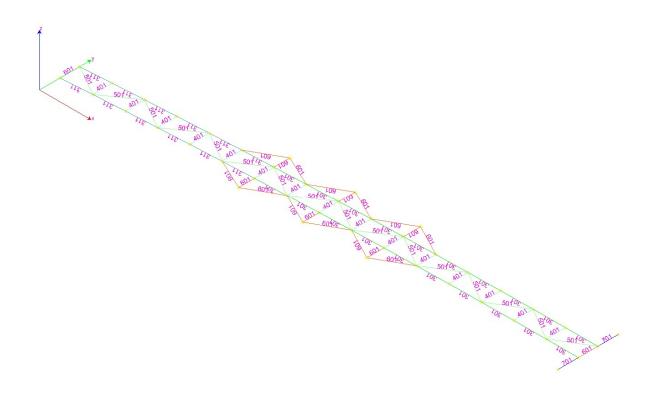


### Numerazione nodale intradosso trave reticolare spaziale



Numerazione nodale piloni e stralli

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 7 di 87



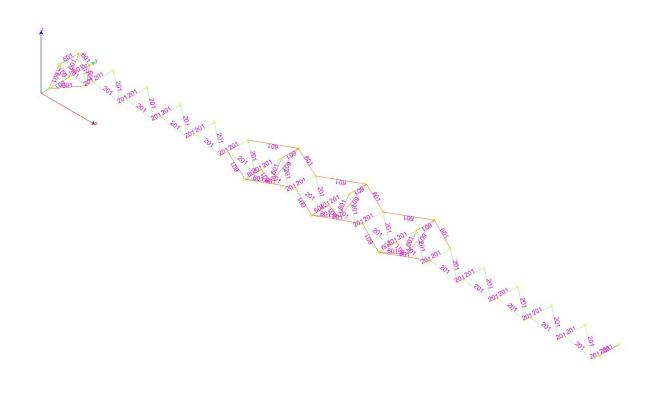
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Numerazione sezioni aste estradosso trave reticolare spaziale (metà sinistra)

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 8 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

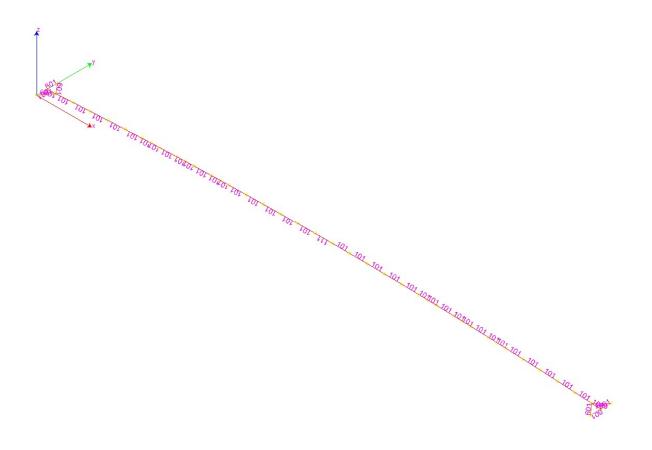
PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Numerazione sezioni aste diagonali trave reticolare spaziale (metà sinistra)

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4


 Data:
 Novembre 2023

 Allegato 1- Pag. 9 di 87



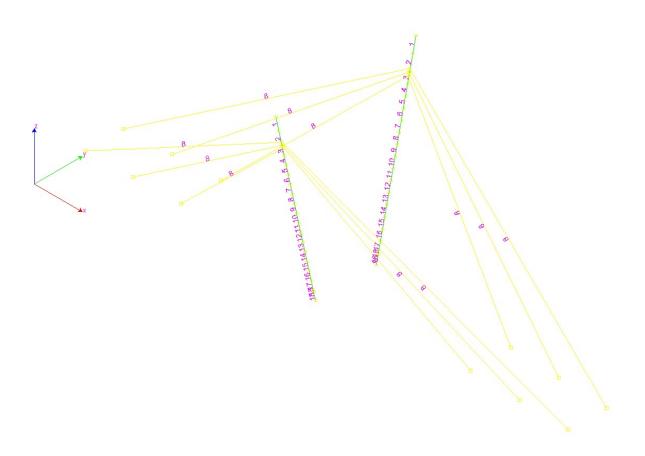
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Numerazione sezioni aste intradosso trave reticolare spaziale

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 10 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Numerazione sezioni piloni e stralli



Numerazione sezioni degli elementi aggiuntivi per modellazione soletta impalcato

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 11 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 2.3 Materiali e sezioni

### 2.3.1 Materiali

| Materiale | Info          | E           | v    | α        | Peso<br>Specifico |
|-----------|---------------|-------------|------|----------|-------------------|
| Numero    |               | [MPa]       |      | 1/[1/ºC] | [kN/m3]           |
| 1         | Acciaio S 355 | 210000      | 0.33 | 0.000012 | 78.5              |
| 2         | Dummy         | 210000003.1 | 0.33 | 0.00001  | 0.1               |
| 3         | Acciaio Funi  | 165000      | 0.33 | 0.00001  | 83.7              |
| 99        | Dummy         | 210000.00   | 0.30 | 0.000000 | 0.00              |

### 2.3.2 Sezioni

### Piloni – Elementi tipo "beam"

| Sezione nr. | Materiale |                                          |
|-------------|-----------|------------------------------------------|
| 1           | 1         | CassoniPasserellaReno Concio750 Pilone   |
| 2           | 1         | CassoniPasserellaReno Concio2250 Pilone  |
| 3           | 1         | CassoniPasserellaReno Concio3500 Pilone  |
| 4           | 1         | CassoniPasserellaReno Concio4500 Pilone  |
| 5           | 1         | CassoniPasserellaReno Concio5500 Pilone  |
| 6           | 1         | CassoniPasserellaReno Concio6500 Pilone  |
| 7           | 1         | CassoniPasserellaReno Concio7500 Pilone  |
| 8           | 1         | CassoniPasserellaReno Concio8500 Pilone  |
| 9           | 1         | CassoniPasserellaReno Concio9500 Pilone  |
| 10          | 1         | CassoniPasserellaReno Concio10500 Pilone |
| 11          | 1         | CassoniPasserellaReno Concio11500 Pilone |
| 12          | 1         | CassoniPasserellaReno Concio12500 Pilone |
| 13          | 1         | CassoniPasserellaReno Concio13500 Pilone |
| 14          | 1         | CassoniPasserellaReno Concio14500 Pilone |
| 15          | 1         | CassoniPasserellaReno Concio15500 Pilone |
| 16          | 1         | CassoniPasserellaReno Concio16500 Pilone |
| 17          | 1         | CassoniPasserellaReno Concio17500 Pilone |
| 18          | 1         | CassoniPasserellaReno Concio18500 Pilone |
| 98          | 1         | Quals. Extension Pilone                  |
| 99          | 2         | Quals. Offset Pilone                     |

| Sociono | Area   | J3                 | J2                 | J23                | Jt                 | V., | V., |  |
|---------|--------|--------------------|--------------------|--------------------|--------------------|-----|-----|--|
| Sezione | [cm²]  | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | Хх  | Ху  |  |
| 1       | 109.44 | 3408               | 6619               | 0                  | 974                | 2.2 | 1.5 |  |
| 2       | 158.24 | 14073              | 16029              | 0                  | 10534              | 1.9 | 1.5 |  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 Allegato 1- Pag. 12 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 3  | 234.58 | 26854   | 29805  | 0 | 25353 | 2.3 | 1.4 |
|----|--------|---------|--------|---|-------|-----|-----|
| 4  | 267.38 | 48884   | 43270  | 0 | 42153 | 2.2 | 1.3 |
| 5  | 299.86 | 79564   | 60173  | 0 | 63877 | 2.1 | 1.3 |
| 6  | 332.82 | 120395  | 81390  | 0 | 91049 | 2   | 1.3 |
| 7  | 365.62 | 172273  | 107015 | 0 | 435   | 1.9 | 1.3 |
| 8  | 398.1  | 236646  | 137235 | 0 | 463   | 1.9 | 1.3 |
| 9  | 430.9  | 314188  | 173089 | 0 | 491   | 1.8 | 1.3 |
| 10 | 463.86 | 406423  | 214938 | 0 | 519   | 1.8 | 1.3 |
| 11 | 496.34 | 513628  | 262324 | 0 | 547   | 1.8 | 1.3 |
| 12 | 529.14 | 638017  | 316806 | 0 | 575   | 1.8 | 1.3 |
| 13 | 561.62 | 780813  | 377727 | 0 | 602   | 1.7 | 1.3 |
| 14 | 594.58 | 942467  | 447077 | 0 | 630   | 1.7 | 1.3 |
| 15 | 627.38 | 1123950 | 524071 | 0 | 658   | 1.7 | 1.3 |
| 16 | 659.86 | 1325740 | 608563 | 0 | 686   | 1.7 | 1.3 |
| 17 | 692.66 | 1550720 | 702667 | 0 | 714   | 1.7 | 1.3 |
| 18 | 725.3  | 1800620 | 805459 | 0 | 742   | 1.6 | 1.2 |
| 98 | 725.3  | 1800620 | 805459 | 0 | 742   | 1.6 | 1.2 |
| 99 | 725.3  | 1800620 | 805459 | 0 | 742   | 1.6 | 1.2 |

Trave reticolare spaziale e impalcato – Elementi tipo "beam"

| Sezione nr. | Materiale |                                                      |
|-------------|-----------|------------------------------------------------------|
| 1           | 99        | Corrente equivalente soletta                         |
| 101         | 1         | CHS_EN10219 244.5X12.0 Corrente Long Inf             |
| 111         | 1         | CHS_EN10219 244.5X12.5 Corrente Long Inf rinf        |
| 201         | 1         | CHS_EN10219 114.3X5.0 Diagonali di Parete            |
| 301         | 1         | CHS_EN10219 177.8X8.0 Corrente Long Sup              |
| 311         | 1         | CHS_EN10219 177.8X12.0 Corrente Long Sup Rinf        |
| 401         | 1         | CHS_EN10219 114.3X5.0 Traversi Sup                   |
| 501         | 1         | CHS_EN10219 114.3X6.0 Diagonali Orizzontali Reticola |
| 601         | 1         | CHS_EN10219 177.8X8.0 Aste Aggancio Impalcato        |
| 701         | 1         | CHS_EN10219 177.8X8.0 Ritegno trasversale            |
| 1001        | 1         | HEAA 180 Trasv Impalc                                |
| 1101        | 1         | HEAA 180 Sostegn Impalc                              |
| 2001        | 2         | CHS_EN10219 193.7X8.0 AUX Connessioni Dummy          |
| 3001        | 1         | HEAA 120 Parapetto                                   |
| 3101        | 1         | CHS_EN10219 60.3X3.0 Corrimano                       |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| Cariana | Area  | J3                 | J2                 | J23                | Jt                 | ٧   | ٧   |
|---------|-------|--------------------|--------------------|--------------------|--------------------|-----|-----|
| Sezione | [cm²] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | Хх  | Ху  |
| 1       | 40.00 | 1971               | 730                | 0                  | 8                  | 4.1 | 1.4 |
| 101     | 87.65 | 5938               | 5938               | 0                  | 11877              | 1.5 | 1.5 |
| 111     | 91.11 | 6147               | 6147               | 0                  | 12295              | 1.5 | 1.5 |
| 201     | 17.17 | 257                | 257                | 0                  | 514                | 1.5 | 1.5 |
| 301     | 42.68 | 1541               | 1541               | 0                  | 3083               | 1.5 | 1.5 |
| 311     | 62.51 | 2159               | 2159               | 0                  | 4318               | 1.5 | 1.5 |
| 401     | 17.17 | 257                | 257                | 0                  | 514                | 1.5 | 1.5 |
| 501     | 20.41 | 300                | 300                | 0                  | 600                | 1.5 | 1.5 |
| 601     | 42.68 | 1541               | 1541               | 0                  | 3083               | 1.5 | 1.5 |
| 701     | 42.68 | 1541               | 1541               | 0                  | 3083               | 1.5 | 1.5 |
| 1001    | 36.61 | 1971               | 730                | 0                  | 8                  | 4.1 | 1.4 |
| 1101    | 36.61 | 1971               | 730                | 0                  | 8                  | 4.1 | 1.4 |
| 2001    | 46.67 | 2016               | 2016               | 0                  | 4031               | 1.5 | 1.5 |
| 3001    | 18.6  | 414                | 159                | 0                  | 3                  | 3.8 | 1.4 |
| 3101    | 5.40  | 22                 | 22                 | 0                  | 44                 | 1.5 | 1.5 |

### Elementi tipo "truss"

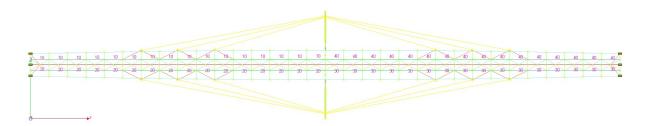
| Sezione nr. | Materiael |                         |                                              |
|-------------|-----------|-------------------------|----------------------------------------------|
| 1           | 99        |                         | Diagonale equiv. soletta                     |
| 8           | 3         |                         | FuniRedaelli_FLC FLC_1xD32 Funi1(D.B.)       |
|             |           |                         | KN 99999.98 [kN/m]                           |
| 100         |           | Appoggio fisso longit.  | KVx 999999.98 [kN/m]                         |
| 101         |           | Appoggio libero longit. | KN 99999.98 [kN/m]                           |
| 102         |           | Vincolo trasversale     | KVy 999999.98 [kN/m]                         |
| 103         | 1         |                         | CHS_EN10219 177.8X8.0 Appoggi centrali(D.B.) |
| 200         | 1         |                         | Tubi Pieni 20 Controventi parapetto(D.B.)    |

| Coriona | Area  | J3                 | J2                 | J23                | Jt                 | V., | V   |
|---------|-------|--------------------|--------------------|--------------------|--------------------|-----|-----|
| Sezione | [cm²] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | Хх  | Ху  |
| 1       | 10.00 | 0                  | 0                  | 0                  | 0                  | 0   | 0   |
| 8       | 6.81  | 1000000            | 1000000            | 0                  | 0                  | 1   | 1   |
| 103     | 42.68 | 1541               | 1541               | 0                  | 3083               | 1.5 | 1.5 |
| 200     | 3.14  | 1                  | 1                  | 0                  | 2                  | 1.1 | 1.1 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 14 di 87* 


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 2.4 Carichi e azioni

Per i dettagli delle azioni di progetto vedere la Relazione Tecnica.

Aree di carico:



### Numerazione aree di carico

| Area   |           | Ax   | Ау   | Az    | Area  |       | Cario   | hi unitari <sub>l</sub> | per condiz | ione        | Car  | richi To | otali |
|--------|-----------|------|------|-------|-------|-------|---------|-------------------------|------------|-------------|------|----------|-------|
| Numero | Commento  | [m²] | [m²] | [m²]  | [m²]  | Cand  | qx      | qу                      | qz         | Applicato   | Qx   | Qy       | Qz    |
|        |           |      |      |       |       | Cond. | [kN/m2] | [kN/m2]                 | [kN/m2]    | Riferimento | [kN] | [kN]     | [kN]  |
| 10     | Area X-Y+ | -2.3 | 0    | 73.3  | 73.4  | 2     | 0       | 0                       | 2.06       | Global      | 0    | 0        | 151   |
|        |           |      |      |       |       | 3     | 0       | 0                       | 0.7        | Global      | 0    | 0        | 51    |
|        |           |      |      |       |       | 4     | 0       | 0                       | 5          | Glob.Pro    | 0    | 0        | 367   |
|        |           |      |      |       |       | 8     | -0.5    | 0                       | 0          | Global      | -37  | 0        | 0     |
|        |           |      |      |       |       | 11    | 0       | 0                       | 0.5        | Global      | 0    | 0        | 37    |
| 20     | Area X-Y- | -2.3 | 0    | 73.3  | 73.4  | 2     | 0       | 0                       | 2.06       | Global      | 0    | 0        | 151   |
|        |           |      |      |       |       | 3     | 0       | 0                       | 0.7        | Global      | 0    | 0        | 51    |
|        |           |      |      |       |       | 5     | 0       | 0                       | 5          | Glob.Pro    | 0    | 0        | 367   |
|        |           |      |      |       |       | 8     | -0.5    | 0                       | 0          | Global      | -37  | 0        | 0     |
|        |           |      |      |       |       | 11    | 0       | 0                       | 0.5        | Global      | 0    | 0        | 37    |
| 30     | Area X+Y- | 2.3  | 0    | 73.3  | 73.4  | 2     | 0       | 0                       | 2.06       | Global      | 0    | 0        | 151   |
|        |           |      |      |       |       | 3     | 0       | 0                       | 0.7        | Global      | 0    | 0        | 51    |
|        |           |      |      |       |       | 6     | 0       | 0                       | 5          | Glob.Pro    | 0    | 0        | 367   |
|        |           |      |      |       |       | 8     | -0.5    | 0                       | 0          | Global      | -37  | 0        | 0     |
|        |           |      |      |       |       | 11    | 0       | 0                       | 0.5        | Global      | 0    | 0        | 37    |
| 40     | Area X+Y+ | 2.3  | 0    | 73.3  | 73.4  | 2     | 0       | 0                       | 2.06       | Global      | 0    | 0        | 151   |
|        |           |      |      |       |       | 3     | 0       | 0                       | 0.7        | Global      | 0    | 0        | 51    |
|        |           |      |      |       |       | 7     | 0       | 0                       | 5          | Glob.Pro    | 0    | 0        | 367   |
|        |           |      |      |       |       | 8     | -0.5    | 0                       | 0          | Global      | -37  | 0        | 0     |
|        |           |      |      |       |       | 11    | 0       | 0                       | 0.5        | Global      | 0    | 0        | 37    |
|        |           | 0    | 0    | 293.3 | 293.5 |       |         |                         |            |             |      |          |       |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

 Data:
 Novembre 2023

 Allegato 1- Pag. 15 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### 2.5 Condizioni e combinazioni di carico

### Condizioni di carico:

| Condizione |                          |
|------------|--------------------------|
| 1          | pp x 1.2                 |
| 2          | perm strutturale         |
| 3          | perm port                |
| 4          | folla area X-Y+          |
| 5          | folla area X-Y-          |
| 6          | folla area X+Y-          |
| 7          | folla area X+Y+          |
| 8          | folla long               |
| 9          | folla parapetto          |
| 10         | vento laterale impalcato |
| 11         | vento verticale Z-       |
| 12         | vento X+ pilone          |
| 13         | vento Y+ pilone          |
| 14         | DT+                      |
| 15         | DT-                      |
| 16         | Pretensione cavi         |
| 17         | Earthquake X+            |
| 18         | Earthquake Y+            |
| 19         | Earthquake Z-            |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 16 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio-Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### Combinazioni di carico SLU

|     |                                   | 1        | 2                | 3         | 4               | 5               | 6               | 7               | 8          | 9               | 10             | 11                 | 12              | 13              | 14   | 15   | 16               |
|-----|-----------------------------------|----------|------------------|-----------|-----------------|-----------------|-----------------|-----------------|------------|-----------------|----------------|--------------------|-----------------|-----------------|------|------|------------------|
|     | SLU                               | pp x 1.2 | perm strutturale | perm port | folla area X-Y+ | folla area X-Y- | folla area X+Y- | folla area X+Y+ | folla long | folla parapetto | vento laterale | vento verticale Z- | vento X+ pilone | vento Y+ pilone | DT+  | DT-  | Pretensione cavi |
| Nr. | Downson out:                      | 1.25     | 1.25             | 1.50      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 1   | Permanenti                        | 1.35     | 1.35             | 1.50      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 2   | Folla totale                      | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 1.35            | 1.35            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 3   | Folla X-                          | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 4   | Folla X+                          | 1.35     | 1.35             | 1.50      | 0.00            | 0.00            | 1.35            | 1.35            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 5   | Folla scacchiera X-Y+ e X+Y-      | 1.35     | 1.35             | 1.50      | 1.35            | 0.00            | 1.35            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 6   | Folla Y+                          | 1.35     | 1.35             | 1.50      | 1.35            | 0.00            | 0.00            | 1.35            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 7   | Folla Y-                          | 1.35     | 1.35             | 1.50      | 0.00            | 1.35            | 1.35            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 8   | Folla scacchiere X+Y- e X-Y+      | 1.35     | 1.35             | 1.50      | 0.00            | 1.35            | 0.00            | 1.50            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 9   | Azione long. 10% folla X+ + Folla | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 1.35            | 1.35            | 1.35       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 10  | Azione long. 10% folla X- + Folla | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 1.35            | 1.35            | -1.35      | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 11  | Folla con spinte parapetto        | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 1.35            | 1.35            | 0.00       | 1.50            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             |
| 12  | Vento Y+ + Folla                  | 1.35     | 1.35             | 1.50      | 0.81            | 0.81            | 0.81            | 0.81            | 0.00       | 0.00            | 1.50           | 1.50               | 0.00            | 1.50            | 0.00 | 0.00 | 1.00             |
| 13  | Vento Y- + Folla                  | 1.35     | 1.35             | 1.50      | 0.81            | 0.81            | 0.81            | 0.81            | 0.00       | 0.00            | -1.50          | 1.50               | 0.00            | -1.50           | 0.00 | 0.00 | 1.00             |
| 14  | Folla + Vento Y+                  | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 1.35            | 1.35            | 0.00       | 0.00            | 0.90           | 0.90               | 0.00            | 0.90            | 0.00 | 0.00 | 1.00             |
| 15  | Folla + Vento Y-                  | 1.35     | 1.35             | 1.50      | 1.35            | 1.35            | 1.35            | 1.35            | 0.00       | 0.00            | -0.90          | 0.90               | 0.00            | -0.90           | 0.00 | 0.00 | 1.00             |
| 16  | Vento Y+                          | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 1.50           | 1.50               | 0.00            | 1.50            | 0.00 | 0.00 | 1.00             |
| 17  | Vento Y+                          | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | -1.50          | 1.50               | 0.00            | -1.50           | 0.00 | 0.00 | 1.00             |
| 18  | Vento X+ + Folla X+               | 1.35     | 1.35             | 1.50      | 0.00            | 0.00            | 0.81            | 0.81            | 0.00       | 0.00            | 0.00           | 1.50               | 1.50            | 0.00            | 0.00 | 0.00 | 1.00             |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 17 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio-Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| tructures i | n g e g n e r i a      |          |                  |           |                 |                 |                 |                 |            | -0-             |                |                    | •               |                 |      |      |                  | •          |            |       |            |
|-------------|------------------------|----------|------------------|-----------|-----------------|-----------------|-----------------|-----------------|------------|-----------------|----------------|--------------------|-----------------|-----------------|------|------|------------------|------------|------------|-------|------------|
| 19          | Vento X- + Fo          | olla X-  |                  | 1.35      | 1.              | 35              | 1.50            | 0.81            | 0.81       | 0.00            | 0.00           | 0.00               | 0.              | 00              | 0.00 | 1.50 | -1.50            | 0.00       | 0.00       | 0.00  | 1.00       |
| 20          | Folla X+ + Vei         | nto X+   |                  | 1.35      | 1               | 35              | 1.50            | 0.00            | 0.00       | 1.35            | 1.35           | 0.00               | 0.              | 00              | 0.00 | 0.90 | 0.90             | 0.00       | 0.00       | 0.00  | 1.00       |
| 21          | Folla X- + Vei         | nto X-   |                  | 1.35      | 1               | 35              | 1.50            | 1.35            | 1.35       | 0.00            | 0.00           | 0.00               | 0.              | 00              | 0.00 | 0.90 | -0.90            | 0.00       | 0.00       | 0.00  | 1.00       |
| 22          | Vento X                | +        |                  | 1.00      | 1.0             | 00              | 1.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.              | 00              | 0.00 | 1.50 | 1.50             | 0.00       | 0.00       | 0.00  | 1.00       |
| 23          | Vento X                | +        |                  | 1.00      | 1.0             | 00              | 1.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.              | 00              | 0.00 | 1.50 | -1.50            | 0.00       | 0.00       | 0.00  | 1.00       |
| 24          | DT+ + Fol              | lla      |                  | 1.35      | 1               | 35              | 1.50            | 0.81            | 0.81       | 0.81            | 0.81           | 0.00               | 0.              | 00              | 0.00 | 0.00 | 0.00             | 0.00       | 1.50       | 0.00  | 1.00       |
| 25          | DT- + Fol              | la       |                  | 1.35      | 1.3             | 35              | 1.50            | 0.81            | 0.81       | 0.81            | 0.81           | 0.00               | 0.              | 00              | 0.00 | 0.00 | 0.00             | 0.00       | 0.00       | 1.50  | 1.00       |
| Combi       | inazioni di carico SLV |          |                  |           |                 |                 |                 |                 |            |                 |                |                    |                 |                 |      |      |                  |            |            |       |            |
|             |                        | 1        | 2                | 3         | 4               | 5               | 6               | 7               | 8          | 9               | 10             | 11                 | 12              | 13              | 14   | 15   | 16               | 17         | 18         | 19    |            |
|             | SLV                    | pp x 1.2 | perm strutturale | perm port | folla area X-Y+ | folla area X-Y- | folla area X+Y- | folla area X+Y+ | folla long | folla parapetto | vento laterale | vento verticale Z- | vento X+ pilone | vento Y+ pilone | DT+  | DT-  | Pretensione cavi | Earthq. X+ | Earthq. Y+ | :     | Earthq. Z- |
| Nr.<br>1    | SLV                    | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | 0          | 0          | 0     |            |
| 2           | SLV Earthq.+X+Y+Z      | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            |      | 0.00 |                  | 1          | 0.300      | 0.300 | )          |
| 3           | SLV Earthq.+X+Y-Z      | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            |      | 0.00 |                  | 1          | 0.300      | -0.30 |            |
| 4           | SLV Earthq.+X-Y+Z      | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            |      | 0.00 |                  | 1          | -0.300     | 0.300 |            |
| 5           | SLV Earthg.+X-Y-Z      | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | 1          | -0.300     | -0.30 |            |
| 6           | SLV EarthgX+Y+Z        | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | -1         | 0.300      | 0.300 |            |
| 7           | SLV EarthqX+Y-Z        | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | -1         | 0.300      | -0.30 | 0          |
| 8           | SLV EarthqX-Y+Z        | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | -1         | -0.300     | 0.300 |            |
| 9           | SLV EarthqX-Y-Z        | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | -1         | -0.300     | -0.30 | 0          |
| 10          | SLV Earthq.+Y+X+Z      | 1.00     | 1.00             | 1.00      | 0.00            | 0.00            | 0.00            | 0.00            | 0.00       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00            | 0.00 | 0.00 | 1.00             | 0.3        | 1.000      | 0.300 | )          |
|             |                        |          |                  |           |                 |                 |                 |                 |            |                 |                |                    |                 |                 |      |      |                  |            |            |       |            |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 18 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio-Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 11 | SLV Earthq.+Y+X-Z | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | 1.000  | -0.300 |
|----|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|
| 12 | SLV Earthq.+Y-X+Z | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | 1.000  | 0.300  |
| 13 | SLV Earthq.+Y-X-Z | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | 1.000  | -0.300 |
| 14 | SLV EarthqY+X+Z   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | -1.000 | 0.300  |
| 15 | SLV EarthqY+X-Z   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | -1.000 | -0.300 |
| 16 | SLV EarthqY-X+Z   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | -1.000 | 0.300  |
| 17 | SLV EarthqY-X-Z   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | -1.000 | -0.300 |
| 18 | SLV Earthq.+Z+X+Y | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | 0.300  | 1.000  |
| 19 | SLV Earthq.+Z+X-Y | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | -0.300 | 1.000  |
| 20 | SLV Earthq.+Z-X+Y | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | 0.300  | 1.000  |
| 21 | SLV Earthq.+Z-X-Y | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | -0.300 | 1.000  |
| 22 | SLV EarthqZ+X+Y   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | 0.300  | -1.000 |
| 23 | SLV EarthqZ+X-Y   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.3  | -0.300 | -1.000 |
| 24 | SLV EarthqZ-X+Y   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | 0.300  | -1.000 |
| 25 | SLV EarthgZ-X-Y   | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.3 | -0.300 | -1.000 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 19 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio-Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### Combinazioni di carico SLE

|                                   | 1                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9               | 10             | 11                 | 12              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SLU                               | pp x 1.2                                                                                                                                                                                                                                                                                          | perm strutturale                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | perm port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | folla area X-Y+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | folla area X-Y-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | folla area X+Y-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | folla area X+Y+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | folla long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | folla parapetto | vento laterale | vento verticale Z- | vento X+ pilone | vento Y+ pilone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DT+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pretensione cavi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dawn an anti                      | 4.00                                                                                                                                                                                                                                                                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00            |                |                    | 0.00            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla scacchiera X-Y+ e X+Y-      | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla Y+                          | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla Y-                          | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla scacchiere X+Y- e X-Y+      | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Azione long. 10% folla X+ + Folla | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Azione long. 10% folla X- + Folla | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla con spinte parapetto        | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vento Y+ + Folla                  | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 1.00           | 1.00               | 0.00            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vento Y- + Folla                  | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | -1.00          | -1.00              | 0.00            | -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla + Vento Y+                  | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.60           | 0.60               | 0.00            | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folla + Vento Y-                  | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | -0.60          | 0.60               | 0.00            | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vento Y+                          | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 1.00           | 1.00               | 0.00            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vento Y+                          | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 1.00           | 1.00               | 0.00            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DT+ + Folla                       | 1.00                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 0.00           | 0.00               | 0.00            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | Permanenti Folla totale Folla X- Folla X+ Folla scacchiera X-Y+ e X+Y- Folla Y+ Folla Y- Folla scacchiere X+Y- e X-Y+ Azione long. 10% folla X+ + Folla Azione long. 10% folla X- + Folla Folla con spinte parapetto Vento Y+ + Folla Vento Y+ + Folla Folla + Vento Y+ Folla + Vento Y+ Vento Y+ | Permanenti 1.00 Folla totale 1.00 Folla X- 1.00 Folla X+ 1.00 Folla Scacchiera X-Y+ e X+Y- 1.00 Folla Y+ 1.00 Folla Y- 1.00 Folla scacchiere X+Y- e X-Y+ 1.00 Azione long. 10% folla X+ + Folla 1.00 Azione long. 10% folla X- + Folla 1.00 Folla con spinte parapetto 1.00 Vento Y+ + Folla 1.00 Folla + Vento Y+ 1.00 Folla + Vento Y+ 1.00 | SLU   SLU | SLU   SLU | SLU   SLU | Permanenti   1.00   1.00   1.00   1.00   0.00   0.00     Folla totale   1.00   1.00   1.00   1.00   1.00   1.00     Folla X-   1.00   1.00   1.00   1.00   1.00   1.00     Folla X+   1.00   1.00   1.00   1.00   1.00   0.50     Folla Scacchiera X-Y+ e X+Y-   1.00   1.00   1.00   1.00   0.50     Folla Y+   1.00   1.00   1.00   1.00   0.50     Folla Scacchiera X-Y+ e X-Y+   1.00   1.00   1.00   0.50     Folla Scacchiera X-Y+ e X-Y+   1.00   1.00   1.00   0.50     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   0.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00     Folla Scacchiera X-Y- e X-Y-   1.00   1.00 | SLU   Slu | SLU   Slu | SLU             | SLU            | SLU                | SLU             | SLU   Slu | SLU  Remanenti  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1. | SLU  Permanenti  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1 | SLU  Permanenti  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 20 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio-Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 19 | DT- + Folla         | 1.00 | 1.00 | 1.00 | 0.70 | 0.70 | 0.70 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 1.00 | 1.00 |
|----|---------------------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|
| 20 | Vento X+ + Folla X+ | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.70 | 0.70 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00  | 0.00 | 0.00 | 0.00 | 1.00 |
| 21 | Vento X- + Folla X- | 1.00 | 1.00 | 1.00 | 0.70 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| 22 | Folla X+ + Vento X+ | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.60  | 0.00 | 0.00 | 0.00 | 1.00 |
| 23 | Folla X- + Vento X- | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | -0.60 | 0.00 | 0.00 | 0.00 | 1.00 |
| 24 | Vento X+            | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00  | 0.00 | 0.00 | 0.00 | 1.00 |
| 25 | Vento X+            | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 1.00 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 21 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 3 Principali risultati dell'analisi frequenziale

L'analisi frequenziale è stata condotta su entrambi i modelli analizzati.

Si riportano i risultati del modello con soletta equivalente.

### Legenda

R ordinata dello spettro

Coeff.di Part. coefficienti di partecipazione (in letteratura g<sub>ij</sub>)

|L<sub>1</sub>|/|L<sub>1</sub>| rapporto percentuale fra i fattori di partecipazione del modo i-esimo e del primo modo

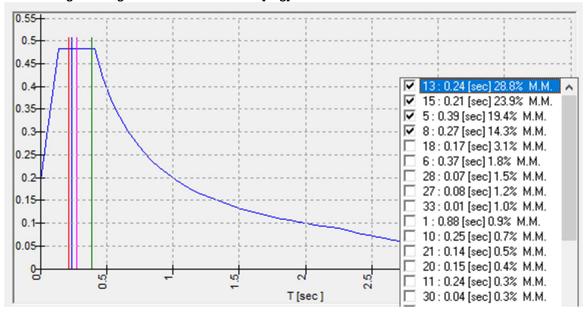
Mmi/Mmtot percentuale massa modale efficacie dell'i-esimo modo Sum Mmi/Mmtot percentuale cumulativa delle masse modali efficaci

Analisi spettrale via vettori di Ritz Smorzamento strutturale 5.0 % risposta  $S = CQC(S_i)$ segno risposta = sign( $\Sigma S_i$ )

| Direzione          | Modo Principale | Periodo | % Massa<br>Modale | % Massa<br>Modale |
|--------------------|-----------------|---------|-------------------|-------------------|
| d'ingresso         |                 | [sec]   | Modo Principale   | Totale            |
| 0.00000 [deg] SLV  | 13              | 0.24    | 28.8              | 99.4              |
| 90.00000 [deg] SLV | 36              | 0.45    | 40.0              | 97.7              |
| Verticale SLV V.   | 72              | 0.37    | 33.4              | 96.6              |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

### Risultati angolo di ingresso del sisma: 0.00000 [deg] SLV

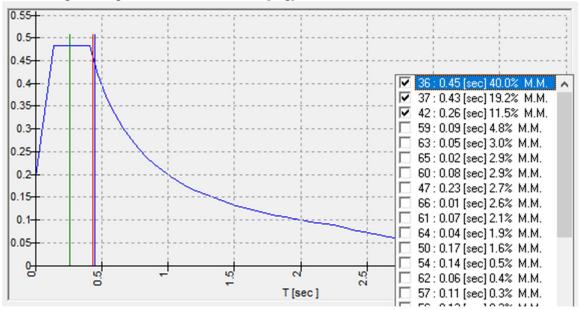


|      |    | Periodo |       | Coefficente          |                                    | Massa    | %                                  | % Σ                                |  |
|------|----|---------|-------|----------------------|------------------------------------|----------|------------------------------------|------------------------------------|--|
| Modo |    | [sec]   |       | di<br>Partecipazione | % L <sub>i</sub>  / L <sub>1</sub> | Modale   | M <sub>mi</sub> /M <sub>mtot</sub> | M <sub>mi</sub> /M <sub>mtot</sub> |  |
|      | 13 | 0.24    | 0.482 | 6.56E+01             |                                    | 4.30E+03 | 28.8                               | 28.8                               |  |
|      | 15 | 0.21    | 0.482 | 5.97E+01             | 91                                 | 3.56E+03 | 23.9                               | 52.7                               |  |
|      | 5  | 0.39    | 0.482 | -5.38E+01            | 82                                 | 2.89E+03 | 19.4                               | 72.1                               |  |
|      | 8  | 0.27    | 0.482 | 4.62E+01             | 70.5                               | 2.14E+03 | 14.3                               | 86.4                               |  |
|      | 18 | 0.17    | 0.482 | -2.16E+01            | 32.9                               | 4.65E+02 | 3.1                                | 89.5                               |  |
|      | 6  | 0.37    | 0.482 | 1.65E+01             | 25.2                               | 2.73E+02 | 1.8                                | 91.4                               |  |
|      | 28 | 0.07    | 0.345 | -1.49E+01            | 22.8                               | 2.23E+02 | 1.5                                | 92.9                               |  |
|      | 27 | 0.08    | 0.352 | 1.36E+01             | 20.7                               | 1.85E+02 | 1.2                                | 94.1                               |  |
|      | 33 | 0.01    | 0.213 | -1.20E+01            | 18.3                               | 1.44E+02 | 1                                  | 95.1                               |  |
|      |    |         |       |                      |                                    |          |                                    |                                    |  |

.....

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembr


Novembre 2023 Allegato 1- Pag. 23 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Risultati angolo di ingresso del sisma: 90.00000 [deg] SLV

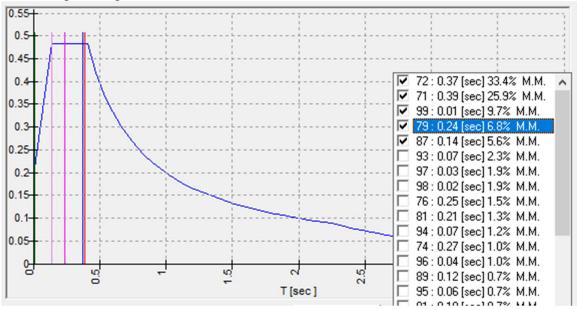


|      |    | Periodo<br>R<br>[sec] |       | Coefficente          |           | Massa    | %                                  | % Σ                                |
|------|----|-----------------------|-------|----------------------|-----------|----------|------------------------------------|------------------------------------|
| Modo |    |                       |       | di<br>Partecipazione | % Li / L1 | Modale   | M <sub>mi</sub> /M <sub>mtot</sub> | M <sub>mi</sub> /M <sub>mtot</sub> |
|      | 36 | 0.45                  | 0.446 | 7.72E+01             |           | 5.96E+03 | 40                                 | 40                                 |
|      | 37 | 0.43                  | 0.459 | -5.35E+01            | 69.3      | 2.86E+03 | 19.2                               | 59.2                               |
|      | 42 | 0.26                  | 0.482 | -4.14E+01            | 53.7      | 1.72E+03 | 11.5                               | 70.7                               |
|      | 59 | 0.09                  | 0.377 | 2.68E+01             | 34.8      | 7.21E+02 | 4.8                                | 75.5                               |
|      | 63 | 0.05                  | 0.292 | -2.12E+01            | 27.4      | 4.49E+02 | 3                                  | 78.5                               |
|      | 65 | 0.02                  | 0.241 | 2.09E+01             | 27.1      | 4.39E+02 | 2.9                                | 81.5                               |
|      | 60 | 0.08                  | 0.366 | -2.08E+01            | 27        | 4.34E+02 | 2.9                                | 84.4                               |
|      | 47 | 0.23                  | 0.482 | 2.00E+01             | 25.9      | 4.01E+02 | 2.7                                | 87                                 |
|      | 66 | 0.01                  | 0.217 | -1.98E+01            | 25.6      | 3.91E+02 | 2.6                                | 89.7                               |
|      | 61 | 0.07                  | 0.349 | -1.76E+01            | 22.8      | 3.11E+02 | 2.1                                | 91.8                               |

. . . . . .

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


**Data:** Novembre 2023 Allegato 1- Pag. 24 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Risultati angolo di ingresso del sisma: Verticale SLV V.

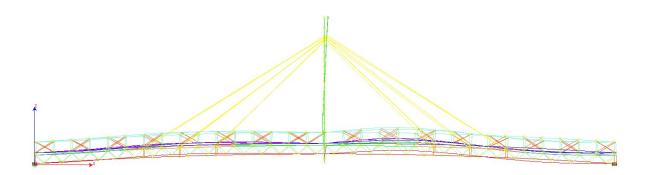


|      | Periodo |       | Coefficente          |                                    | Massa    | %                                  | % Σ                                |
|------|---------|-------|----------------------|------------------------------------|----------|------------------------------------|------------------------------------|
| Modo | [sec]   | R     | di<br>Partecipazione | % L <sub>i</sub>  / L <sub>1</sub> | Modale   | M <sub>mi</sub> /M <sub>mtot</sub> | M <sub>mi</sub> /M <sub>mtot</sub> |
| 7    | 2 0.37  | 0.088 | 7.06E+01             |                                    | 4.98E+03 | 33.4                               | 33.4                               |
| 7    | '1 0.39 | 0.085 | -6.22E+01            | 88.1                               | 3.87E+03 | 25.9                               | 59.3                               |
| g    | 9 0.01  | 0.119 | -3.81E+01            | 54                                 | 1.45E+03 | 9.7                                | 69                                 |
| 7    | 9 0.24  | 0.139 | -3.20E+01            | 45.3                               | 1.02E+03 | 6.8                                | 75.9                               |
| 8    | 0.14    | 0.218 | 2.90E+01             | 41.1                               | 8.42E+02 | 5.6                                | 81.5                               |
| g    | 0.07    | 0.218 | -1.85E+01            | 26.2                               | 3.42E+02 | 2.3                                | 83.8                               |
| g    | 0.03    | 0.175 | 1.69E+01             | 24                                 | 2.86E+02 | 1.9                                | 85.7                               |
| g    | 0.02    | 0.139 | -1.66E+01            | 23.6                               | 2.77E+02 | 1.9                                | 87.6                               |
| 7    | 6 0.25  | 0.13  | -1.48E+01            | 20.9                               | 2.18E+02 | 1.5                                | 89.1                               |
| 8    | 0.21    | 0.152 | -1.38E+01            | 19.6                               | 1.91E+02 | 1.3                                | 90.3                               |
| g    | 0.07    | 0.218 | 1.36E+01             | 19.3                               | 1.86E+02 | 1.2                                | 91.6                               |
| 7    | 4 0.27  | 0.12  | 1.20E+01             | 17                                 | 1.44E+02 | 1                                  | 92.5                               |
| 9    | 0.04    | 0.204 | 1.19E+01             | 16.9                               | 1.42E+02 | 1                                  | 93.5                               |

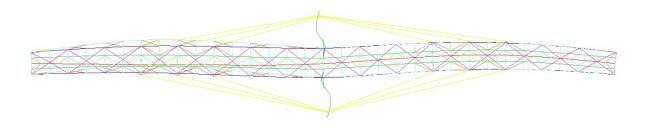
.....

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

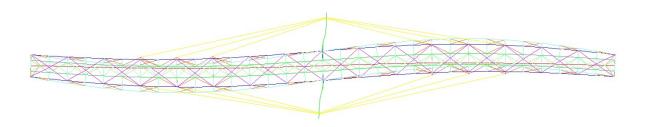
Codice: REL\_6\_4
Data: Novembr


Novembre 2023

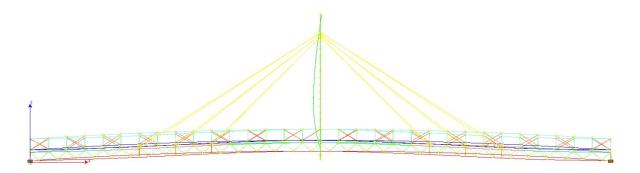
Allegato 1- Pag. 25 di 87




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto




Modo nr. 13 - Traslazionale dir. X - T = 0.24 sec



Modo nr. 36 - Traslazionale simmetrico dir. Y - T = 0.45 sec

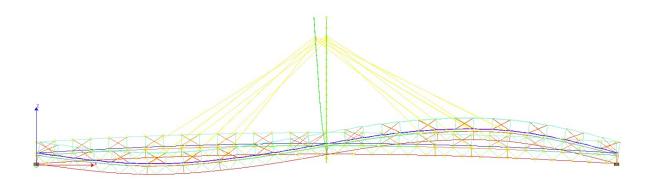


Modo nr. 2 – Traslazionale antimetrico dir. Y – T = 0.61 sec

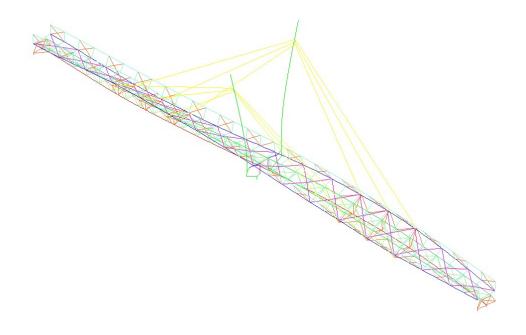


Modo nr. 72 - Traslazionale simmetrico dir. Z - T = 0.37 sec

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 26 di 87




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



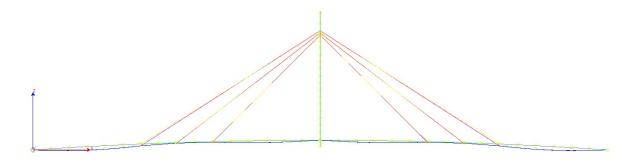
Modo nr. 1 – Traslazionale antimetrico dir. Z – T = 0.88 sec



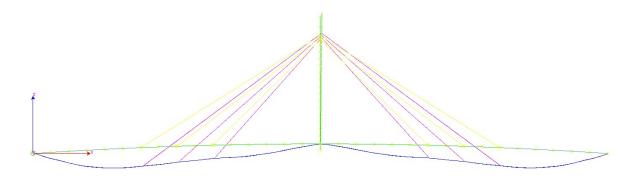
Modo nr. 4 – Torsionale antimetrico – T = 0.43 sec

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

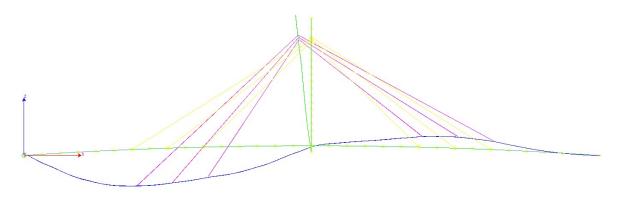
Codice: REL\_6\_4


**Data:** Novembre 2023 Allegato 1- Pag. 27 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4 Principali risultati dell'analisi statica e dinamica


# 4.1 Deformate e spostamenti



Piloni, stralli e correnti superiori - Combinazione 1 SLE - Permanenti

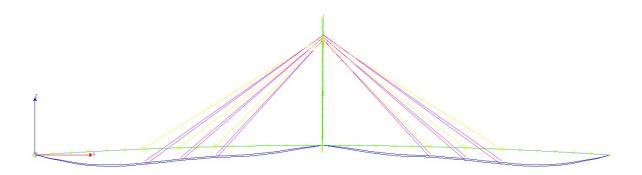


Piloni, stralli e correnti superiori - Combinazione 2 SLE - Folla

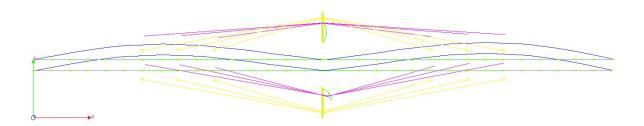


Piloni, stralli e correnti superiori - Combinazione 3 SLE - Folla X-

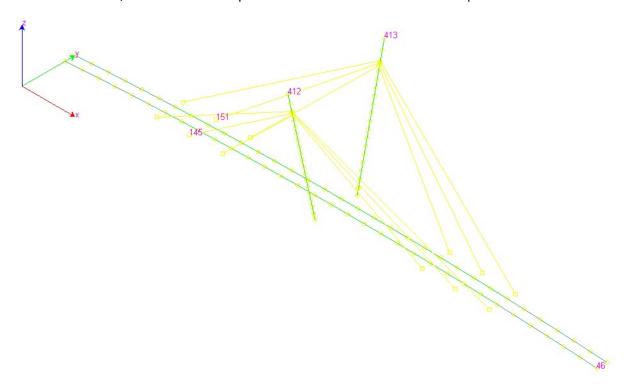
**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 28 di 87* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Piloni, stralli e correnti superiori - Combinazione 6 SLE - Folla Y+



Piloni, stralli e correnti superiori - Combinazione 10 SLV - Earthquake X+Y+Z+



Nodi con spostamenti monitorati

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 29 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# VALORI ESTRATTI DA MODELLO SENZA SOLETTA EQUIVALENTE

# Nodo n. 412 – Sommità pilone

#### Combinazioni SLU

| Comb. | Ux<br>[cm] | Uy<br>[cm] | Uz<br>[cm] | Rx<br>[deg] | Ry<br>[deg] | Rz<br>[deg] |
|-------|------------|------------|------------|-------------|-------------|-------------|
| 1     | 0.0        | 3.3        | 0.7        |             | -0.00094    |             |
| 2     | 0.6        | 7.2        | 1.5        | -0.55358    | -0.05757    | 0.35022     |
| 3     | -15.1      | 5.3        | 1.1        | -0.41240    | 0.63144     | -4.88107    |
| 4     | 15.7       | 5.2        | 1.1        | -0.40545    | -0.68994    | 5.23680     |
| 5     | 4.5        | 5.3        | 1.1        | -0.40972    | -0.27978    | 1.90048     |
| 6     | 0.4        | 4.4        | 0.9        | -0.34659    | -0.03330    | 0.20389     |
| 7     | 0.2        | 6.1        | 1.3        | -0.47126    | -0.02520    | 0.15184     |
| 8     | -3.3       | 5.3        | 1.1        | -0.41246    | 0.19669     | -1.34837    |
| 9     | 0.4        | 7.3        | 1.5        | -0.55925    | -0.05534    | 0.31649     |
| 10    | 8.0        | 7.1        | 1.5        | -0.54790    | -0.05979    | 0.38394     |
| 11    | 0.6        | 7.2        | 1.5        | -0.55343    | -0.05776    | 0.35144     |
| 12    | 0.6        | 11.9       | 2.7        | -0.87138    | -0.05015    | 0.30922     |
| 13    | 0.3        | 0.2        | -0.1       | -0.06867    | -0.03227    | 0.19214     |
| 14    | 0.7        | 10.9       | 2.4        | -0.81369    | -0.06671    | 0.40835     |
| 15    | 0.6        | 3.9        | 0.7        | -0.33207    | -0.05598    | 0.33810     |
| 16    | 0.1        | 8.8        | 2.0        | -0.63784    | -0.00180    | 0.01489     |
| 17    | -0.2       | -2.8       | -0.8       | 0.16487     | 0.01608     | -0.10218    |
| 18    | 11.8       | 4.9        | 1.0        | -0.38410    | -1.60983    | 8.22229     |
| 19    | -11.3      | 4.9        | 1.0        | -0.38236    | 1.56138     | -7.92775    |
| 20    | 17.1       | 5.5        | 1.2        | -0.42652    | -1.40724    | 8.28360     |
| 21    | -16.5      | 5.5        | 1.2        | -0.42993    | 1.34117     | -7.88186    |
| 22    | 2.2        | 3.0        | 0.6        | -0.23944    | -1.18205    | 4.99601     |
| 23    | -2.4       | 3.0        | 0.6        | -0.23353    | 1.19633     | -5.08330    |
| 24    | 5.0        | 5.1        | 3.1        | -0.44330    | -0.48152    | 2.93275     |
| 25    | 2.8        | 5.4        | 2.2        | -0.44072    | -0.26997    | 1.64413     |

# Combinazioni SLV

| Comb  | Ux   | Uy   | Uz   | Rx          | Ry       | Rz       |
|-------|------|------|------|-------------|----------|----------|
| Comb. | [cm] | [cm] | [cm] | Rx<br>[deg] | [deg]    | [deg]    |
| 26    | -0.1 | 2.6  | 0.5  | -0.20432    | 0.01344  | -0.08199 |
| 27    | 1.0  | 4.0  | 0.9  | -0.30848    | -1.27533 | 4.97268  |
| 28    | 0.9  | 3.8  | 0.8  | -0.29025    | -1.33361 | 4.75605  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 30 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 29 | 0.7  | 3.0 | 0.6 | -0.23800 -1.22127 4.71349 |
|----|------|-----|-----|---------------------------|
| 30 | 0.7  | 2.8 | 0.6 | -0.21977 -1.27955 4.49686 |
| 31 | -0.9 | 2.4 | 0.5 | -0.18887 1.30643 -4.66084 |
| 32 | -1.0 | 2.1 | 0.4 | -0.17064 1.24815 -4.87747 |
| 33 | -1.2 | 1.4 | 0.2 | -0.11839 1.36049 -4.92002 |
| 34 | -1.3 | 1.1 | 0.2 | -0.10016 1.30221 -5.13665 |
| 35 | 0.6  | 4.6 | 1.0 | -0.34885 -0.43477 1.90333 |
| 36 | 0.6  | 4.4 | 1.0 | -0.33062 -0.49305 1.68670 |
| 37 | 0.1  | 4.1 | 0.9 | -0.31296 0.33975 -0.98672 |
| 38 | 0.0  | 3.9 | 8.0 | -0.29473 0.28147 -1.20335 |
| 39 | -0.3 | 1.3 | 0.2 | -0.11391 -0.25459 1.03938 |
| 40 | -0.3 | 1.0 | 0.2 | -0.09567 -0.31287 0.82275 |
| 41 | -0.9 | 8.0 | 0.1 | -0.07802 0.51994 -1.85067 |
| 42 | -0.9 | 0.5 | 0.0 | -0.05979 0.46166 -2.06730 |
| 43 | 0.4  | 3.8 | 8.0 | -0.28789 -0.30372 1.85368 |
| 44 | 0.1  | 2.8 | 0.6 | -0.21740 -0.24966 1.59450 |
| 45 | -0.2 | 3.2 | 0.7 | -0.25200 0.47081 -1.03637 |
| 46 | -0.5 | 2.2 | 0.5 | -0.18152 0.52486 -1.29556 |
| 47 | 0.2  | 2.9 | 0.6 | -0.22712 -0.49798 1.13158 |
| 48 | -0.1 | 1.9 | 0.4 | -0.15664 -0.44393 0.87240 |
| 49 | -0.4 | 2.4 | 0.5 | -0.19123 0.27654 -1.75847 |
| 50 | -0.7 | 1.4 | 0.3 | -0.12075 0.33060 -2.01766 |

#### Combinazioni SLE

| Comb.   | Ux   | Uy   | Uz   | Rx<br>[deg] | Ry       | Rz       |
|---------|------|------|------|-------------|----------|----------|
| COIIID. | [cm] | [cm] | [cm] | [deg]       | [deg]    | [deg]    |
| 51      | -0.1 | 2.6  | 0.5  | -0.20432    | 0.01344  | -0.08199 |
| 52      | 0.3  | 5.4  | 1.1  | -0.41862    | -0.02851 | 0.17335  |
| 53      | -5.5 | 4.7  | 1.0  | -0.36633    | 0.22668  | -1.76416 |
| 54      | 5.9  | 4.7  | 1.0  | -0.36376    | -0.26272 | 1.98320  |
| 55      | 3.2  | 4.0  | 8.0  | -0.31207    | -0.19311 | 1.32169  |
| 56      | 0.2  | 4.4  | 0.9  | -0.34196    | -0.01952 | 0.11916  |
| 57      | 0.2  | 5.0  | 1.1  | -0.38814    | -0.01652 | 0.09988  |
| 58      | -3.1 | 4.0  | 8.0  | -0.31088    | 0.17804  | -1.23032 |
| 59      | 0.2  | 5.5  | 1.2  | -0.42283    | -0.02686 | 0.14837  |
| 60      | 0.4  | 5.4  | 1.1  | -0.41442    | -0.03016 | 0.19833  |
| 61      | 0.3  | 5.4  | 1.1  | -0.41852    | -0.02864 | 0.17416  |
| 62      | 0.3  | 8.8  | 2.0  | -0.64335    | -0.02608 | 0.16134  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 31 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 63 | 0.0  | 0.4 | -0.0 | -0.06532 -0.00576 0.03216 |
|----|------|-----|------|---------------------------|
| 64 | 0.4  | 7.9 | 1.7  | -0.59203 -0.03460 0.21210 |
| 65 | 0.3  | 8.0 | 1.8  | -0.59713 -0.02794 0.16848 |
| 66 | -0.0 | 6.8 | 1.5  | -0.49333 0.00328 -0.01740 |
| 67 | -0.0 | 6.8 | 1.5  | -0.49333 0.00328 -0.01740 |
| 68 | 3.3  | 4.2 | 2.3  | -0.35796 -0.31366 1.91036 |
| 69 | 1.8  | 4.4 | 1.6  | -0.35624 -0.17262 1.05128 |
| 70 | 5.7  | 4.4 | 0.9  | -0.33934 -0.97687 4.74898 |
| 71 | -5.4 | 4.3 | 0.9  | -0.33721 0.95130 -4.59372 |
| 72 | 6.8  | 4.9 | 1.0  | -0.37781 -0.74092 4.01440 |
| 73 | -6.4 | 4.9 | 1.0  | -0.37802 0.69984 -3.76469 |
| 74 | 1.4  | 2.9 | 0.6  | -0.22773 -0.78355 3.30335 |
| 75 | -1.6 | 2.8 | 0.6  | -0.22380 0.80204 -3.41620 |

# Nodo n. 413 – Sommità pilone

## Combinazioni SLU

| Comb. | Ux    | Uy    | Uz   | Rx       | Ry       | Rz       |
|-------|-------|-------|------|----------|----------|----------|
| Comb. | [cm]  | [cm]  | [cm] | [deg]    | [deg]    | [deg]    |
| 1     | 0.0   | -3.3  | 0.7  | 0.26540  | -0.00148 | -0.00915 |
| 2     | 0.6   | -7.2  | 1.5  | 0.55749  | -0.05927 | -0.36127 |
| 3     | -15.1 | -5.3  | 1.1  | 0.41392  | 0.60323  | 4.74622  |
| 4     | 15.8  | -5.3  | 1.1  | 0.40897  | -0.66398 | -5.11664 |
| 5     | -3.8  | -5.3  | 1.1  | 0.41058  | 0.21218  | 1.48009  |
| 6     | 0.3   | -6.1  | 1.3  | 0.47387  | -0.02919 | -0.17622 |
| 7     | 0.3   | -4.5  | 0.9  | 0.34902  | -0.03157 | -0.19420 |
| 8     | 5.5   | -5.5  | 1.1  | 0.42380  | -0.32314 | -2.22628 |
| 9     | 0.4   | -7.3  | 1.5  | 0.56306  | -0.05715 | -0.32788 |
| 10    | 8.0   | -7.2  | 1.5  | 0.55191  | -0.06138 | -0.39466 |
| 11    | 0.6   | -7.2  | 1.5  | 0.55752  | -0.05955 | -0.36308 |
| 12    | 0.3   | -0.3  | -0.1 | 0.07093  | -0.03597 | -0.21413 |
| 13    | 0.6   | -12.0 | 2.7  | 0.87533  | -0.04919 | -0.30505 |
| 14    | 0.6   | -4.0  | 0.7  | 0.33566  | -0.05916 | -0.35749 |
| 15    | 0.7   | -11.0 | 2.4  | 0.81829  | -0.06709 | -0.41204 |
| 16    | -0.2  | 2.8   | -0.8 | -0.16499 | 0.01339  | 0.08664  |
| 17    | 0.0   | -8.9  | 2.0  | 0.63940  | 0.00016  | -0.00428 |
| 18    | 11.8  | -5.0  | 1.0  | 0.38705  | -1.59099 | -8.13552 |
| 19    | -11.3 | -4.9  | 1.0  | 0.38395  | 1.54050  | 7.82762  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 20 | 17.2  | -5.5 | 1.2 | 0.43028 | -1.37919 -8.15376 |
|----|-------|------|-----|---------|-------------------|
| 21 | -16.5 | -5.6 | 1.2 | 0.43158 | 1.31072 7.73634   |
| 22 | 2.2   | -3.1 | 0.6 | 0.24024 | -1.17880 -4.98154 |
| 23 | -2.4  | -3.0 | 0.6 | 0.23417 | 1.19236 5.06389   |
| 24 | 5.0   | -5.1 | 3.1 | 0.44547 | -0.48437 -2.94918 |
| 25 | 2.8   | -5.4 | 2.2 | 0.44319 | -0.27206 -1.65661 |

#### Combinazioni SLV

| Comb. | Ux   | Uy   | Uz   | Rx      | Ry       | Rz       |
|-------|------|------|------|---------|----------|----------|
| Comb. | [cm] | [cm] | [cm] | [deg]   | [deg]    | [deg]    |
| 26    | -0.1 | -2.6 | 0.5  | 0.20473 | 0.01321  | 0.08034  |
| 27    | 0.7  | -2.9 | 0.6  | 0.22575 | -1.21524 | -4.69819 |
| 28    | 0.7  | -2.6 | 0.5  | 0.20720 | -1.27298 | -4.48349 |
| 29    | 1.0  | -3.9 | 8.0  | 0.29639 | -1.26611 | -4.93403 |
| 30    | 0.9  | -3.6 | 0.8  | 0.27785 | -1.32385 | -4.71933 |
| 31    | -1.2 | -1.6 | 0.3  | 0.13161 | 1.35026  | 4.88001  |
| 32    | -1.2 | -1.3 | 0.2  | 0.11307 | 1.29252  | 5.09472  |
| 33    | -0.9 | -2.6 | 0.5  | 0.20225 | 1.29940  | 4.64417  |
| 34    | -1.0 | -2.3 | 0.5  | 0.18371 | 1.24166  | 4.85887  |
| 35    | -0.2 | -1.2 | 0.2  | 0.11038 | -0.25797 | -1.07067 |
| 36    | -0.3 | -1.0 | 0.1  | 0.09184 | -0.31571 | -0.85596 |
| 37    | -0.8 | -0.8 | 0.1  | 0.08214 | 0.51168  | 1.80279  |
| 38    | -0.8 | -0.6 | 0.1  | 0.06360 | 0.45394  | 2.01750  |
| 39    | 0.6  | -4.6 | 1.0  | 0.34586 | -0.42753 | -1.85681 |
| 40    | 0.5  | -4.3 | 0.9  | 0.32732 | -0.48527 | -1.64211 |
| 41    | -0.0 | -4.2 | 0.9  | 0.31762 | 0.34212  | 1.01665  |
| 42    | -0.1 | -3.9 | 0.9  | 0.29907 | 0.28438  | 1.23135  |
| 43    | 0.1  | -2.7 | 0.6  | 0.21443 | -0.24995 | -1.59630 |
| 44    | 0.4  | -3.7 | 8.0  | 0.28507 | -0.30082 | -1.83215 |
| 45    | -0.5 | -2.3 | 0.5  | 0.18619 | 0.51970  | 1.27716  |
| 46    | -0.2 | -3.3 | 0.7  | 0.25683 | 0.46883  | 1.04131  |
| 47    | -0.1 | -1.8 | 0.4  | 0.15262 | -0.44242 | -0.88063 |
| 48    | 0.2  | -2.8 | 0.6  | 0.22327 | -0.49329 | -1.11647 |
| 49    | -0.6 | -1.4 | 0.3  | 0.12438 | 0.32723  | 1.99283  |
| 50    | -0.4 | -2.5 | 0.5  | 0.19502 | 0.27636  | 1.75699  |

# Combinazioni SLE

Comb. Ux Uy Uz Rx Ry Rz [cm] [cm] [cm] [deg] [deg]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 33 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 51 | -0.1 | -2.6 | 0.5  | 0.20473  | 0.01321  | 0.08034  |
|----|------|------|------|----------|----------|----------|
| 52 | 0.3  | -5.5 | 1.2  | 0.42109  | -0.02960 | -0.18049 |
| 53 | -5.5 | -4.8 | 1.0  | 0.36792  | 0.21577  | 1.71118  |
| 54 | 5.9  | -4.7 | 1.0  | 0.36608  | -0.25357 | -1.94173 |
| 55 | -2.9 | -4.0 | 8.0  | 0.31227  | 0.17147  | 1.18348  |
| 56 | 0.2  | -5.1 | 1.1  | 0.39012  | -0.01846 | -0.11195 |
| 57 | 0.2  | -4.4 | 0.9  | 0.34388  | -0.01934 | -0.11861 |
| 58 | 3.1  | -4.0 | 8.0  | 0.31355  | -0.18786 | -1.28363 |
| 59 | 0.2  | -5.5 | 1.2  | 0.42522  | -0.02803 | -0.15575 |
| 60 | 0.5  | -5.4 | 1.1  | 0.41696  | -0.03117 | -0.20522 |
| 61 | 0.3  | -5.5 | 1.2  | 0.42111  | -0.02979 | -0.18169 |
| 62 | 0.1  | -1.0 | 0.1  | 0.10970  | -0.01663 | -0.09804 |
| 63 | 0.2  | -8.2 | 1.8  | 0.60266  | -0.01688 | -0.10643 |
| 64 | 0.3  | -3.3 | 0.6  | 0.27320  | -0.02952 | -0.17797 |
| 65 | 0.4  | -3.3 | 0.6  | 0.26871  | -0.03434 | -0.21114 |
| 66 | -0.2 | 1.0  | -0.3 | -0.04175 | 0.01333  | 0.08454  |
| 67 | -0.2 | 1.0  | -0.3 | -0.04175 | 0.01333  | 0.08454  |
| 68 | 3.3  | -4.2 | 2.3  | 0.35939  | -0.31557 | -1.92141 |
| 69 | 1.8  | -4.4 | 1.6  | 0.35787  | -0.17403 | -1.05970 |
| 70 | 5.7  | -4.4 | 0.9  | 0.34135  | -0.96821 | -4.70970 |
| 71 | -5.4 | -4.4 | 0.9  | 0.33859  | 0.94110  | 4.54429  |
| 72 | 6.9  | -4.9 | 1.0  | 0.38029  | -0.73037 | -3.96648 |
| 73 | -6.4 | -4.9 | 1.0  | 0.37969  | 0.68743  | 3.70459  |
| 74 | 1.4  | -2.9 | 0.6  | 0.22840  | -0.78146 | -3.29424 |
| 75 | -1.6 | -2.8 | 0.6  | 0.22436  | 0.79931  | 3.40271  |

Nodo n. 145 – Estremo inferiore strallo intermedio

# Combinazioni SLU

| Comb. | Ux<br>[cm] | Uy<br>[cm] | Uz<br>[cm] | Rx<br>[deg] | Ry<br>[deg] | Rz<br>[deg] |
|-------|------------|------------|------------|-------------|-------------|-------------|
| 1     | 0.3        | -0.1       | -1.6       | 0.00000     | 0.00000     | 0.00000     |
| 2     | 1.1        | -0.3       | -7.6       | 0.00000     | 0.00000     | 0.00000     |
| 3     | 3.1        | -1.0       | -25.2      | 0.00000     | 0.00000     | 0.00000     |
| 4     | -1.6       | 0.6        | 16.0       | 0.00000     | 0.00000     | 0.00000     |
| 5     | 0.5        | 3.2        | 1.2        | 0.00000     | 0.00000     | 0.00000     |
| 6     | 0.6        | 2.1        | -2.5       | 0.00000     | 0.00000     | 0.00000     |
| 7     | 0.9        | -2.4       | -6.7       | 0.00000     | 0.00000     | 0.00000     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 34 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 8  | 8.0  | -3.6 | -9.6  | 0.00000 0.00000 0.00000 |
|----|------|------|-------|-------------------------|
| 9  | 1.4  | -0.3 | -8.2  | 0.00000 0.00000 0.00000 |
| 10 | 0.9  | -0.3 | -6.9  | 0.00000 0.00000 0.00000 |
| 11 | 1.1  | -0.3 | -7.6  | 0.00000 0.00000 0.00000 |
| 12 | 8.0  | 1.8  | -5.0  | 0.00000 0.00000 0.00000 |
| 13 | 1.0  | -2.3 | -6.7  | 0.00000 0.00000 0.00000 |
| 14 | 1.1  | 0.9  | -7.5  | 0.00000 0.00000 0.00000 |
| 15 | 1.2  | -1.5 | -8.5  | 0.00000 0.00000 0.00000 |
| 16 | 0.1  | 2.0  | 0.1   | 0.00000 0.00000 0.00000 |
| 17 | 0.3  | -2.1 | -1.6  | 0.00000 0.00000 0.00000 |
| 18 | -0.9 | 0.5  | 10.7  | 0.00000 0.00000 0.00000 |
| 19 | 2.2  | -0.8 | -18.8 | 0.00000 0.00000 0.00000 |
| 20 | -1.7 | 0.7  | 17.0  | 0.00000 0.00000 0.00000 |
| 21 | 3.2  | -1.1 | -27.0 | 0.00000 0.00000 0.00000 |
| 22 | 0.1  | 0.1  | 1.7   | 0.00000 0.00000 0.00000 |
| 23 | 0.4  | -0.2 | -3.2  | 0.00000 0.00000 0.00000 |
| 24 | 2.8  | -0.5 | -5.3  | 0.00000 0.00000 0.00000 |
| 25 | 1.9  | -0.3 | -5.2  | 0.00000 0.00000 0.00000 |

## Combinazioni SLV

| Comb. |      |      |      | Rx<br>[deg] |         | Rz<br>[deg] |
|-------|------|------|------|-------------|---------|-------------|
| 26    | 0.1  | -0.0 |      | 0.00000     |         |             |
| 27    | 0.5  | 1.5  | -0.4 |             | 0.00000 |             |
| 28    | 0.4  | 1.5  | -0.2 | 0.00000     | 0.00000 | 0.00000     |
| 29    | 0.6  | -1.4 | -1.7 | 0.00000     | 0.00000 | 0.00000     |
| 30    | 0.5  | -1.4 | -1.6 | 0.00000     | 0.00000 | 0.00000     |
| 31    | -0.3 | 1.3  | 1.4  | 0.00000     | 0.00000 | 0.00000     |
| 32    | -0.3 | 1.3  | 1.5  | 0.00000     | 0.00000 | 0.00000     |
| 33    | -0.2 | -1.6 | -0.0 | 0.00000     | 0.00000 | 0.00000     |
| 34    | -0.2 | -1.6 | 0.2  | 0.00000     | 0.00000 | 0.00000     |
| 35    | 0.1  | 4.7  | 1.9  | 0.00000     | 0.00000 | 0.00000     |
| 36    | 0.1  | 4.7  | 2.0  | 0.00000     | 0.00000 | 0.00000     |
| 37    | -0.1 | 4.7  | 2.4  | 0.00000     | 0.00000 | 0.00000     |
| 38    | -0.2 | 4.7  | 2.6  | 0.00000     | 0.00000 | 0.00000     |
| 39    | 0.4  | -4.8 | -2.8 | 0.00000     | 0.00000 | 0.00000     |
| 40    | 0.4  | -4.8 | -2.6 | 0.00000     | 0.00000 | 0.00000     |
| 41    | 0.2  | -4.8 | -2.2 | 0.00000     | 0.00000 | 0.00000     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 Allegato 1- Pag. 35 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 42 | 0.1  | -4.8 | -2.1 | 0.00000 0.00000 0.00000 |
|----|------|------|------|-------------------------|
| 43 | 0.2  | 1.4  | 0.0  | 0.00000 0.00000 0.00000 |
| 44 | 0.3  | -1.4 | -1.4 | 0.00000 0.00000 0.00000 |
| 45 | 0.0  | 1.4  | 0.6  | 0.00000 0.00000 0.00000 |
| 46 | 0.1  | -1.5 | -0.8 | 0.00000 0.00000 0.00000 |
| 47 | 0.1  | 1.4  | 0.6  | 0.00000 0.00000 0.00000 |
| 48 | 0.2  | -1.4 | -0.8 | 0.00000 0.00000 0.00000 |
| 49 | -0.1 | 1.4  | 1.1  | 0.00000 0.00000 0.00000 |
| 50 | -0.0 | -1.5 | -0.2 | 0.00000 0.00000 0.00000 |

#### Combinazioni SLE

| Comb. | Ux<br>[ama] | Uy   | Uz    | Rx      | Ry      | Rz      |
|-------|-------------|------|-------|---------|---------|---------|
|       |             |      | [cm]  | [deg]   | [deg]   | [deg]   |
| 51    | 0.1         | -0.0 | -0.1  | 0.00000 | 0.00000 | 0.00000 |
| 52    | 0.7         | -0.2 | -4.5  | 0.00000 | 0.00000 | 0.00000 |
| 53    | 1.4         | -0.5 | -11.0 | 0.00000 | 0.00000 | 0.00000 |
| 54    | -0.3        | 0.2  | 4.2   | 0.00000 | 0.00000 | 0.00000 |
| 55    | 0.3         | 2.4  | 2.0   | 0.00000 | 0.00000 | 0.00000 |
| 56    | 0.5         | 0.7  | -2.6  | 0.00000 | 0.00000 | 0.00000 |
| 57    | 0.6         | -1.0 | -4.2  | 0.00000 | 0.00000 | 0.00000 |
| 58    | 0.6         | -2.6 | -6.6  | 0.00000 | 0.00000 | 0.00000 |
| 59    | 0.9         | -0.2 | -5.0  | 0.00000 | 0.00000 | 0.00000 |
| 60    | 0.5         | -0.2 | -4.0  | 0.00000 | 0.00000 | 0.00000 |
| 61    | 0.7         | -0.2 | -4.5  | 0.00000 | 0.00000 | 0.00000 |
| 62    | 0.5         | 1.2  | -3.1  | 0.00000 | 0.00000 | 0.00000 |
| 63    | 0.5         | -1.5 | -3.3  | 0.00000 | 0.00000 | 0.00000 |
| 64    | 0.7         | 0.6  | -4.4  | 0.00000 | 0.00000 | 0.00000 |
| 65    | 8.0         | -1.0 | -5.2  | 0.00000 | 0.00000 | 0.00000 |
| 66    | 0.1         | 1.3  | 0.0   | 0.00000 | 0.00000 | 0.00000 |
| 67    | 0.1         | 1.3  | 0.0   | 0.00000 | 0.00000 | 0.00000 |
| 68    | 1.9         | -0.3 | -3.2  | 0.00000 | 0.00000 | 0.00000 |
| 69    | 1.2         | -0.2 | -3.2  | 0.00000 | 0.00000 | 0.00000 |
| 70    | -0.2        | 0.2  | 4.1   | 0.00000 | 0.00000 | 0.00000 |
| 71    | 1.2         | -0.4 | -9.8  | 0.00000 | 0.00000 | 0.00000 |
| 72    | -0.3        | 0.2  | 4.9   | 0.00000 | 0.00000 | 0.00000 |
| 73    | 1.5         | -0.5 | -12.3 | 0.00000 | 0.00000 | 0.00000 |
| 74    | 0.1         | 0.0  | 1.1   | 0.00000 | 0.00000 | 0.00000 |
| 75    | 0.3         | -0.1 | -2.2  | 0.00000 | 0.00000 | 0.00000 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 36 di 87* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

## Nodo n. 151 – Estremo inferiore strallo intermedio

#### Combinazioni SLU

| Comb. | Ux<br>[cm] | Uy<br>[cm] | Uz<br>[cm] | Rx<br>[deg] | Ry<br>[deg] | Rz<br>[deg] |
|-------|------------|------------|------------|-------------|-------------|-------------|
| 1     | 0.3        | -0.1       | -1.6       | 0.00000     | 0.00000     | 0.00000     |
| 2     | 1.1        | -0.3       | -7.4       | 0.00000     | 0.00000     | 0.00000     |
| 3     | 3.1        | -1.0       | -24.6      | 0.00000     | 0.00000     | 0.00000     |
| 4     | -1.6       | 0.5        | 15.7       | 0.00000     | 0.00000     | 0.00000     |
| 5     | 0.9        | 3.1        | -10.1      | 0.00000     | 0.00000     | 0.00000     |
| 6     | 0.9        | 2.0        | -6.5       | 0.00000     | 0.00000     | 0.00000     |
| 7     | 0.5        | -2.5       | -2.4       | 0.00000     | 0.00000     | 0.00000     |
| 8     | 0.4        | -3.7       | 2.3        | 0.00000     | 0.00000     | 0.00000     |
| 9     | 1.4        | -0.3       | -8.1       | 0.00000     | 0.00000     | 0.00000     |
| 10    | 8.0        | -0.4       | -6.7       | 0.00000     | 0.00000     | 0.00000     |
| 11    | 1.1        | -0.4       | -7.3       | 0.00000     | 0.00000     | 0.00000     |
| 12    | 1.0        | 1.8        | -6.5       | 0.00000     | 0.00000     | 0.00000     |
| 13    | 8.0        | -2.3       | -4.9       | 0.00000     | 0.00000     | 0.00000     |
| 14    | 1.2        | 0.9        | -8.2       | 0.00000     | 0.00000     | 0.00000     |
| 15    | 1.1        | -1.6       | -7.3       | 0.00000     | 0.00000     | 0.00000     |
| 16    | 0.3        | 2.0        | -1.5       | 0.00000     | 0.00000     | 0.00000     |
| 17    | 0.1        | -2.2       | 0.1        | 0.00000     | 0.00000     | 0.00000     |
| 18    | -0.9       | 0.3        | 10.5       | 0.00000     | 0.00000     | 0.00000     |
| 19    | 2.2        | -0.8       | -18.4      | 0.00000     | 0.00000     | 0.00000     |
| 20    | -1.7       | 0.5        | 16.8       | 0.00000     | 0.00000     | 0.00000     |
| 21    | 3.2        | -1.0       | -26.4      | 0.00000     | 0.00000     | 0.00000     |
| 22    | 0.1        | 0.0        | 1.6        | 0.00000     | 0.00000     | 0.00000     |
| 23    | 0.4        | -0.2       | -3.1       | 0.00000     | 0.00000     | 0.00000     |
| 24    | 2.8        | -0.1       | -5.1       | 0.00000     | 0.00000     | 0.00000     |
| 25    | 1.8        | -0.2       | -5.1       | 0.00000     | 0.00000     | 0.00000     |

# Combinazioni SLV

| Comb. | Ux   | Uy   | Uz   | Rx    | Ry      | Rz      |         |
|-------|------|------|------|-------|---------|---------|---------|
|       | [cm] | [cm] | [cm] | [deg] | [deg]   | [deg]   |         |
|       | 26   | 0.1  | -0.1 | -0.1  | 0.00000 | 0.00000 | 0.00000 |
|       | 27   | 0.6  | 1.4  | -1.7  | 0.00000 | 0.00000 | 0.00000 |
|       | 28   | 0.5  | 1.4  | -1.5  | 0.00000 | 0.00000 | 0.00000 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 37 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 29 | 0.5  | -1.4 | -0.4 | 0.00000 0.00000 0.00000 |
|----|------|------|------|-------------------------|
| 30 | 0.4  | -1.4 | -0.2 | 0.00000 0.00000 0.00000 |
| 31 | -0.2 | 1.3  | 0.0  | 0.00000 0.00000 0.00000 |
| 32 | -0.2 | 1.3  | 0.2  | 0.00000 0.00000 0.00000 |
| 33 | -0.3 | -1.6 | 1.3  | 0.00000 0.00000 0.00000 |
| 34 | -0.3 | -1.6 | 1.5  | 0.00000 0.00000 0.00000 |
| 35 | 0.4  | 4.7  | -2.6 | 0.00000 0.00000 0.00000 |
| 36 | 0.4  | 4.7  | -2.4 | 0.00000 0.00000 0.00000 |
| 37 | 0.2  | 4.7  | -2.1 | 0.00000 0.00000 0.00000 |
| 38 | 0.2  | 4.7  | -1.9 | 0.00000 0.00000 0.00000 |
| 39 | 0.1  | -4.8 | 1.8  | 0.00000 0.00000 0.00000 |
| 40 | 0.0  | -4.8 | 2.0  | 0.00000 0.00000 0.00000 |
| 41 | -0.2 | -4.9 | 2.3  | 0.00000 0.00000 0.00000 |
| 42 | -0.2 | -4.9 | 2.5  | 0.00000 0.00000 0.00000 |
| 43 | 0.3  | 1.4  | -1.3 | 0.00000 0.00000 0.00000 |
| 44 | 0.2  | -1.5 | 0.0  | 0.00000 0.00000 0.00000 |
| 45 | 0.1  | 1.3  | -0.8 | 0.00000 0.00000 0.00000 |
| 46 | 0.0  | -1.5 | 0.5  | 0.00000 0.00000 0.00000 |
| 47 | 0.2  | 1.4  | -0.7 | 0.00000 0.00000 0.00000 |
| 48 | 0.1  | -1.5 | 0.6  | 0.00000 0.00000 0.00000 |
| 49 | 0.0  | 1.3  | -0.2 | 0.00000 0.00000 0.00000 |
| 50 | -0.1 | -1.5 | 1.1  | 0.00000 0.00000 0.00000 |

#### Combinazioni SLE

| Comb. | Ux   | Uy   | Uz    | Rx<br>[deg] | Ry      | Rz      |
|-------|------|------|-------|-------------|---------|---------|
| Comb. | [cm] | [cm] | [cm]  | [deg]       | [deg]   | [deg]   |
| 51    | 0.1  | -0.1 | -0.1  | 0.00000     | 0.00000 | 0.00000 |
| 52    | 0.7  | -0.2 | -4.4  | 0.00000     | 0.00000 | 0.00000 |
| 53    | 1.4  | -0.5 | -10.8 | 0.00000     | 0.00000 | 0.00000 |
| 54    | -0.3 | 0.1  | 4.2   | 0.00000     | 0.00000 | 0.00000 |
| 55    | 0.5  | 2.4  | -6.4  | 0.00000     | 0.00000 | 0.00000 |
| 56    | 0.6  | 0.6  | -4.1  | 0.00000     | 0.00000 | 0.00000 |
| 57    | 0.5  | -1.0 | -2.5  | 0.00000     | 0.00000 | 0.00000 |
| 58    | 0.3  | -2.7 | 1.9   | 0.00000     | 0.00000 | 0.00000 |
| 59    | 0.9  | -0.2 | -4.9  | 0.00000     | 0.00000 | 0.00000 |
| 60    | 0.5  | -0.2 | -3.9  | 0.00000     | 0.00000 | 0.00000 |
| 61    | 0.7  | -0.2 | -4.4  | 0.00000     | 0.00000 | 0.00000 |
| 62    | 0.6  | 1.2  | -4.1  | 0.00000     | 0.00000 | 0.00000 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 38 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 63 | 0.4  | -1.5 | -2.1  | 0.00000 0.00000 0.00000 |
|----|------|------|-------|-------------------------|
| 64 | 8.0  | 0.6  | -5.0  | 0.00000 0.00000 0.00000 |
| 65 | 0.7  | -1.0 | -4.2  | 0.00000 0.00000 0.00000 |
| 66 | 0.2  | 1.3  | -1.1  | 0.00000 0.00000 0.00000 |
| 67 | 0.2  | 1.3  | -1.1  | 0.00000 0.00000 0.00000 |
| 68 | 1.9  | -0.1 | -3.1  | 0.00000 0.00000 0.00000 |
| 69 | 1.2  | -0.1 | -3.1  | 0.00000 0.00000 0.00000 |
| 70 | -0.2 | 0.1  | 4.0   | 0.00000 0.00000 0.00000 |
| 71 | 1.2  | -0.4 | -9.6  | 0.00000 0.00000 0.00000 |
| 72 | -0.3 | 0.1  | 4.9   | 0.00000 0.00000 0.00000 |
| 73 | 1.5  | -0.5 | -12.0 | 0.00000 0.00000 0.00000 |
| 74 | 0.1  | -0.0 | 1.1   | 0.00000 0.00000 0.00000 |
| 75 | 0.3  | -0.2 | -2.1  | 0.00000 0.00000 0.00000 |

Nodo n. 46 – Estremo libero impalcato

## Combinazioni SLU

| Comb. | Ux   | Uy   | Uz   | Rx       | Ry       | Rz       |
|-------|------|------|------|----------|----------|----------|
| Comb. | [cm] | [cm] | [cm] | [deg]    | [deg]    | [deg]    |
| 1     | -0.4 | 0.0  | -0.0 | 0.00828  | -0.25052 | 0.01995  |
| 2     | -0.2 | 0.0  | -0.1 | 0.02125  | -0.72466 | 0.04673  |
| 3     | 1.8  | -0.0 | -0.0 | 0.00105  | 0.55168  | -0.01694 |
| 4     | -2.3 | 0.0  | -0.1 | 0.02847  | -1.52686 | 0.08363  |
| 5     | -0.2 | 0.0  | -0.1 | 0.35865  | -0.65197 | 0.21461  |
| 6     | -0.3 | 0.0  | -0.0 | -0.18864 | -0.39045 | -0.13925 |
| 7     | -0.2 | 0.0  | -0.1 | 0.21817  | -0.58473 | 0.20594  |
| 8     | -0.4 | 0.0  | -0.0 | -0.35841 | -0.37959 | -0.16405 |
| 9     | 0.2  | 0.0  | -0.1 | 0.02063  | -0.69364 | 0.04510  |
| 10    | -0.5 | 0.0  | -0.1 | 0.02187  | -0.75568 | 0.04837  |
| 11    | -0.1 | 0.0  | -0.1 | 0.02132  | -0.72530 | 0.04812  |
| 12    | -0.3 | 0.0  | -0.1 | -0.05759 | -0.55071 | -0.12394 |
| 13    | -0.1 | 0.0  | -0.1 | 0.09260  | -0.62478 | 0.20194  |
| 14    | -0.2 | 0.0  | -0.1 | -0.02294 | -0.73408 | -0.04925 |
| 15    | -0.1 | 0.0  | -0.1 | 0.06717  | -0.77853 | 0.14629  |
| 16    | -0.5 | 0.0  | -0.0 | -0.06808 | -0.14355 | -0.14724 |
| 17    | -0.3 | -0.0 | -0.0 | 0.08211  | -0.21762 | 0.17865  |
| 18    | -1.6 | 0.0  | -0.1 | 0.02283  | -1.18460 | 0.06627  |
| 19    | 1.0  | 0.0  | -0.0 | 0.00439  | 0.29359  | -0.00434 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 20 | -2.3 | 0.0  | -0.1 | 0.02994 | -1.62783 | 0.08850  |
|----|------|------|------|---------|----------|----------|
| 21 | 1.8  | -0.0 | -0.0 | 0.00132 | 0.58935  | -0.01823 |
| 22 | -0.4 | 0.0  | -0.0 | 0.00801 | -0.29611 | 0.02085  |
| 23 | -0.3 | 0.0  | -0.0 | 0.00602 | -0.06506 | 0.01057  |
| 24 | 7.7  | -0.1 | 0.1  | 0.01607 | -0.48521 | 0.03420  |
| 25 | 4.0  | -0.0 | -0.0 | 0.01606 | -0.50880 | 0.03506  |

## Combinazioni SLV

| Comb. | Ux   | Uy   | Uz   | Rx       | Ry       | Rz       |
|-------|------|------|------|----------|----------|----------|
| Comb. | [cm] | [cm] | [cm] | [deg]    | [deg]    | [deg]    |
| 26    | -0.4 | 0.0  | -0.0 | 0.00557  | -0.12784 | 0.01273  |
| 27    | 0.2  | 0.0  | -0.0 | -0.03022 | -0.06038 | -0.06079 |
| 28    | 0.2  | 0.0  | -0.0 | -0.03096 | -0.04449 | -0.06147 |
| 29    | 0.3  | 0.0  | -0.0 | 0.02339  | -0.08766 | 0.07780  |
| 30    | 0.3  | 0.0  | -0.0 | 0.02264  | -0.07178 | 0.07713  |
| 31    | -1.1 | 0.0  | -0.0 | -0.01150 | -0.18390 | -0.05167 |
| 32    | -1.1 | 0.0  | -0.0 | -0.01225 | -0.16802 | -0.05235 |
| 33    | -1.0 | 0.0  | -0.0 | 0.04210  | -0.21119 | 0.08692  |
| 34    | -1.0 | 0.0  | -0.0 | 0.04136  | -0.19531 | 0.08625  |
| 35    | -0.4 | 0.0  | -0.0 | -0.08621 | -0.07177 | -0.21929 |
| 36    | -0.4 | 0.0  | -0.0 | -0.08696 | -0.05589 | -0.21997 |
| 37    | -0.8 | 0.0  | -0.0 | -0.08060 | -0.10883 | -0.21656 |
| 38    | -0.8 | 0.0  | -0.0 | -0.08134 | -0.09295 | -0.21723 |
| 39    | -0.0 | -0.0 | -0.0 | 0.09248  | -0.16273 | 0.24269  |
| 40    | -0.0 | -0.0 | -0.0 | 0.09174  | -0.14685 | 0.24201  |
| 41    | -0.4 | -0.0 | -0.0 | 0.09810  | -0.19979 | 0.24543  |
| 42    | -0.4 | -0.0 | -0.0 | 0.09735  | -0.18391 | 0.24475  |
| 43    | -0.2 | 0.0  | -0.0 | -0.02280 | -0.12214 | -0.05681 |
| 44    | -0.1 | 0.0  | -0.0 | 0.03081  | -0.14943 | 0.08178  |
| 45    | -0.6 | 0.0  | -0.0 | -0.01718 | -0.15920 | -0.05408 |
| 46    | -0.5 | 0.0  | -0.0 | 0.03642  | -0.18648 | 0.08452  |
| 47    | -0.3 | 0.0  | -0.0 | -0.02528 | -0.06920 | -0.05906 |
| 48    | -0.2 | 0.0  | -0.0 | 0.02832  | -0.09649 | 0.07953  |
| 49    | -0.7 | 0.0  | -0.0 | -0.01967 | -0.10626 | -0.05633 |
| 50    | -0.6 | 0.0  | -0.0 | 0.03394  | -0.13355 | 0.08227  |

# Combinazioni SLE

Comb. Ux Uy Uz Rx Ry Rz [cm] [cm] [cm] [deg] [deg]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 40 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

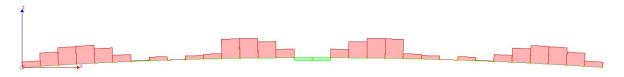
 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 51 | -0.4 | 0.0  | -0.0 | 0.00557  | -0.12784 | 0.01273  |
|----|------|------|------|----------|----------|----------|
| 52 | -0.3 | 0.0  | -0.1 | 0.01518  | -0.47906 | 0.03256  |
| 53 | 0.5  | 0.0  | -0.0 | 0.00770  | -0.00634 | 0.00898  |
| 54 | -1.1 | 0.0  | -0.1 | 0.01786  | -0.77617 | 0.04623  |
| 55 | -0.3 | 0.0  | -0.1 | 0.26511  | -0.42521 | 0.15692  |
| 56 | -0.3 | 0.0  | -0.0 | -0.06256 | -0.35527 | -0.03632 |
| 57 | -0.3 | 0.0  | -0.1 | 0.08811  | -0.42723 | 0.09153  |
| 58 | -0.4 | 0.0  | -0.0 | -0.24436 | -0.18169 | -0.11163 |
| 59 | 0.0  | 0.0  | -0.1 | 0.01472  | -0.45608 | 0.03135  |
| 60 | -0.5 | 0.0  | -0.1 | 0.01564  | -0.50203 | 0.03377  |
| 61 | -0.3 | 0.0  | -0.1 | 0.01523  | -0.47948 | 0.03349  |
| 62 | -0.4 | 0.0  | -0.0 | -0.03680 | -0.38416 | -0.08003 |
| 63 | -0.2 | 0.0  | -0.0 | 0.06140  | -0.36322 | 0.13326  |
| 64 | -0.3 | 0.0  | -0.1 | -0.01428 | -0.48534 | -0.03142 |
| 65 | -0.2 | 0.0  | -0.1 | 0.05075  | -0.51720 | 0.09522  |
| 66 | -0.5 | 0.0  | -0.0 | -0.04353 | -0.13831 | -0.09392 |
| 67 | -0.5 | 0.0  | -0.0 | -0.04353 | -0.13831 | -0.09392 |
| 68 | 5.0  | -0.1 | 0.0  | 0.01230  | -0.34050 | 0.02540  |
| 69 | 2.5  | -0.0 | -0.0 | 0.01230  | -0.35622 | 0.02598  |
| 70 | -0.9 | 0.0  | -0.1 | 0.01579  | -0.69385 | 0.04159  |
| 71 | 0.3  | 0.0  | -0.0 | 0.00736  | -0.00093 | 0.00867  |
| 72 | -1.1 | 0.0  | -0.1 | 0.01883  | -0.84348 | 0.04947  |
| 73 | 0.5  | 0.0  | -0.0 | 0.00788  | 0.01878  | 0.00812  |
| 74 | -0.4 | 0.0  | -0.0 | 0.00720  | -0.24002 | 0.01814  |
| 75 | -0.4 | 0.0  | -0.0 | 0.00587  | -0.08599 | 0.01129  |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

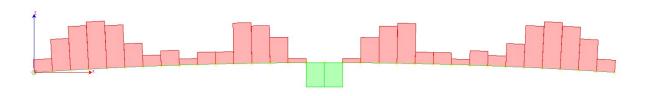
**Data:** Novembre 2023 *Allegato 1- Pag. 41 di 87* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

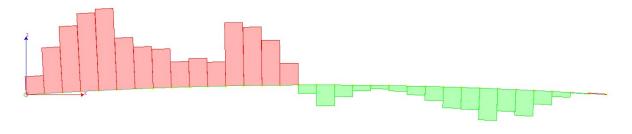
## 4.2 Sollecitazioni


## VALORI ESTRATTI DA MODELLO SENZA SOLETTA EQUIVALENTE



Sforzo assiale Corrente superiore - Comb. 1 SLU

| Sez       | Max<br>[kN] |     |     | Min<br>[kN] |     |     |  |
|-----------|-------------|-----|-----|-------------|-----|-----|--|
| 301 Travi | 203         | 199 | 271 | 228         | 223 | -50 |  |
| 311 Travi | 95          | 79  | 244 | 59          | 47  | 67  |  |


Max 271 Min -50 [kN]



Sforzo assiale Corrente superiore - Comb. 2 SLU

| Sez       |     |     | Max<br>[kN] |     |     | Min<br>[kN] |
|-----------|-----|-----|-------------|-----|-----|-------------|
| 301 Travi | 199 | 185 | 557         | 228 | 224 | -368        |
| 311 Travi | 95  | 79  | 648         | 59  | 47  | 157         |

Max 648 Min -368 [kN]

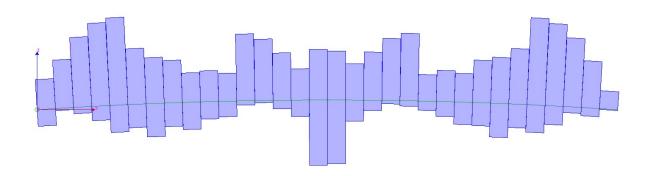


Sforzo assiale Corrente superiore – Comb. 3 SLU

| Sez |           |     | Max<br>[kN] |      |     | Min<br>[kN] |      |  |
|-----|-----------|-----|-------------|------|-----|-------------|------|--|
|     | 301 Travi | 199 | 185         | 865  | 144 | 128         | -509 |  |
|     | 311 Travi | 109 | 95          | 1116 | 128 | 112         | -37  |  |

Max 1116 Min -509 [kN]

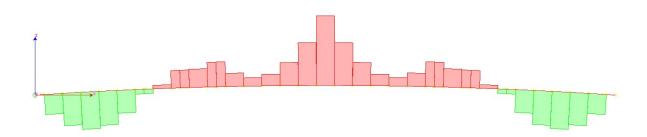
**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 42 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Sforzo assiale Corrente superiore – Inviluppo combinazioni

| Sez                    | Max              | Min     |
|------------------------|------------------|---------|
| Jez                    | [kN]             | [kN]    |
| 301 Travi 200 186 (20) | 928 144 128 (21  | .) -546 |
| 311 Travi 109 95 (21)  | 1205 128 112 (21 | .) -406 |

Max 1205 Min -546 [kN

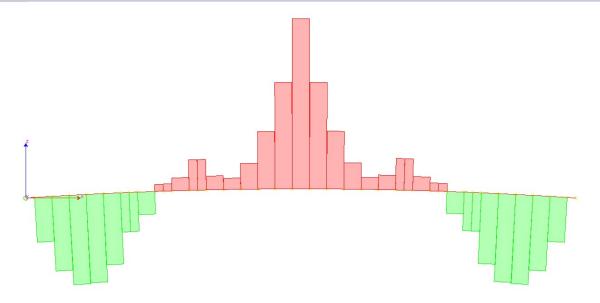


Sforzo assiale Corrente inferiore - Comb. 1 SLU

| Sez            | _ | lax<br>kN] | Min<br>[kN] |      |  |
|----------------|---|------------|-------------|------|--|
| 101 Travi 64 6 | 2 | 586 21     | 19          | -510 |  |
| 111 Travi 64 6 | 3 | 95364      | 63          | 953  |  |

Max 953 Min -510 [kN]

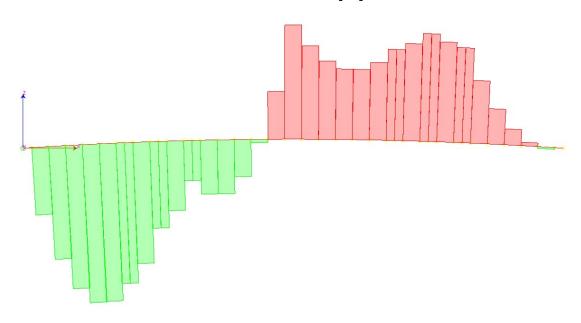
**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 43 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Sforzo assiale Corrente inferiore - Comb. 2 SLU

| Sez          |    | Max<br>[kN] |    |    | Mii<br>[kN | -  |
|--------------|----|-------------|----|----|------------|----|
| 101 Travi 64 | 62 | 1547        | 21 | 19 | -129       | 99 |
| 111 Travi 64 | 63 | 2470        | 64 | 63 | 247        | 70 |

#### Max 2470 Min -1299 [kN]

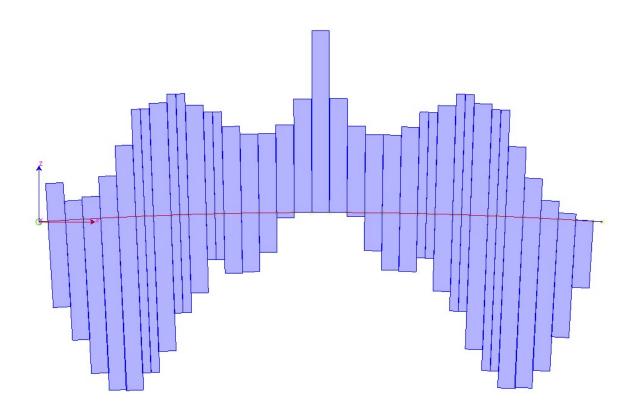


Sforzo assiale Corrente inferiore – Comb. 3 SLU

| Sez |              | Max<br>[kN] |      |    | Min<br>[kN] |       |
|-----|--------------|-------------|------|----|-------------|-------|
|     | 101 Travi 40 | 38          | 1596 | 23 | 21          | -2343 |
|     | 111 Travi 64 | 63          | 1690 | 64 | 63          | 1690  |

Max 1690 Min -2343 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 44 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



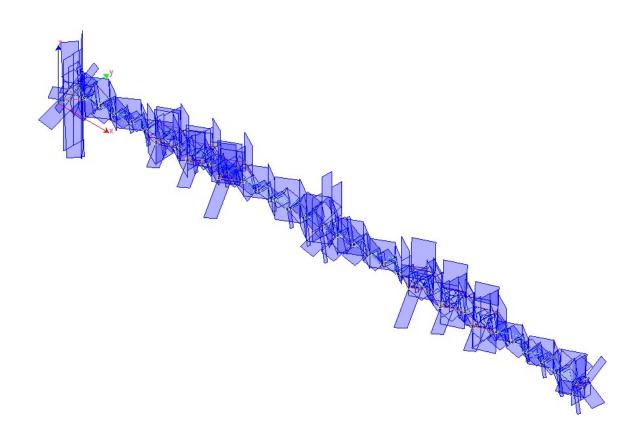
Sforzo assiale Corrente inferiore – Inviluppo combinazioni

| Sez               | Max<br>[kN]    | Min<br>[kN]  |
|-------------------|----------------|--------------|
| 101 Travi 39 37 ( | 20) 1716 27 23 | 3 (21) -2461 |
| 111 Travi 64 63 ( | 15) 2576 64 63 | 3 (28) 350   |

Max 2576 Min -2461 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4


 Data:
 Novembre 2023

 Allegato 1- Pag. 45 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

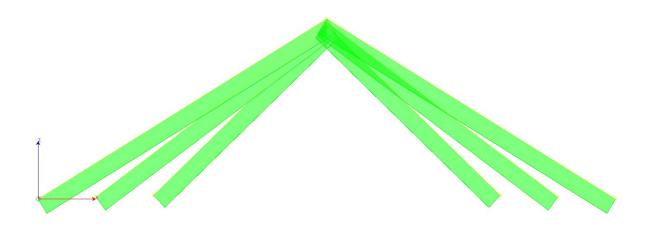


Sforzo assiale Aste diagonali di parete, orizzontali e traversi – Inviluppo combinazioni

| Sez         |             | Max  | Min               |
|-------------|-------------|------|-------------------|
| <u> </u>    |             | [kN] |                   |
| 201 Travi   | 224 64 (8)  | 424  | 64 228 (8) -432   |
| 401 Travi 1 | 26 128 (21) | 313  | 126 128 (20) -278 |
| 501 Travi   | 58 48 (8)   | 317  | 47 57 (8) -292    |
| 601 Travi 2 | 27 228 (24) | 673  | 184 44 (20) -500  |
| 701 Travi 2 | 26 227 (24) | 454  | 228 229 (13) -116 |

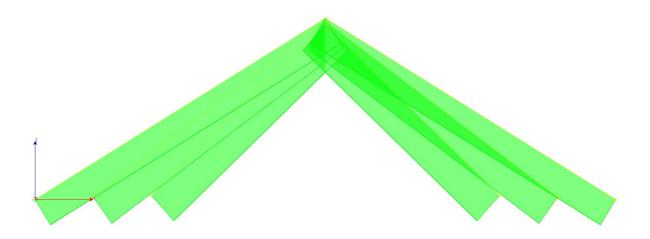
Max 673 Min -500 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 46 di 87* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Sforzo assiale Stralli - Comb. 1 SLU

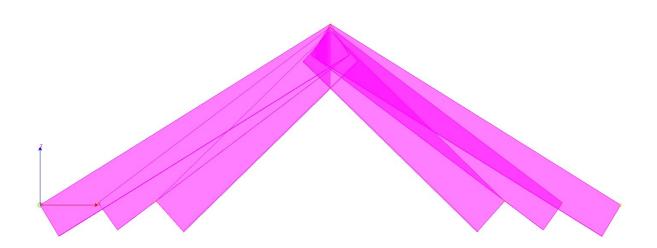
| Sez          | Max          | Min      |
|--------------|--------------|----------|
| Sez          | [kN]         | [kN]     |
| 8 Biella 146 | 406 -144 184 | 403 -149 |



Sforzo assiale Stralli - Comb. 2 SLU

| Sez |              | Max          | Min      |
|-----|--------------|--------------|----------|
|     | <u> </u>     | [kN]         | [kN]     |
|     | 8 Biella 129 | 409 -256 184 | 403 -302 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 47 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Sforzo assiale Stralli – Inviluppo Combinazioni

| Sez                   | Max<br>[kN] |           |
|-----------------------|-------------|-----------|
| 8 Biella 183 403 (32) | -84 184 403 | (20) -366 |





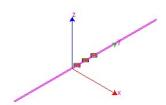


# Vincoli verticali – Inviluppo Combinazioni

| Sez          |            | Max<br>[kN] |             | Min<br>[kN] |
|--------------|------------|-------------|-------------|-------------|
| 100 Biella   | 1 7 (21)   | 249         | 5 10 (40)   | 6           |
| 101 Biella   | 6 12 (20)  | 251         | 6 12 (42)   | 22          |
| 103 Biella 3 | 1 227 (15) | 5443        | 31 227 (32) | 97          |

#### Max 544 Min 6 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 48 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



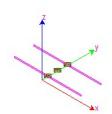




Vincoli trasversali – Inviluppo combinazioni

| Sez           |          | Max<br>[kN] |     |      | Min<br>[kN] |
|---------------|----------|-------------|-----|------|-------------|
| 701 Travi 226 | 227 (24) | 454 228     | 229 | (13) | -116        |
| 102 Biella    | 38 (40)  | 61          | 3 8 | (37) | -61         |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 49 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

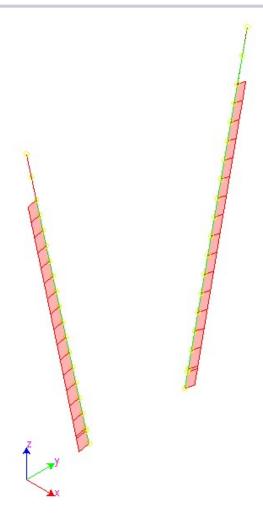




Vincoli longitudinali – Inviluppo combinazioni

| Sez                  | Max<br>[kN] | Min<br>[kN] |
|----------------------|-------------|-------------|
| 100 Biella 5 10 (30) | 2275 10     |             |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 50 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

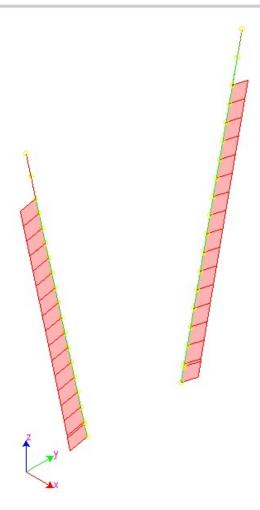


Sforzo assiale Piloni - Comb. 1 SLU

| Sez                | Max             | Min  |
|--------------------|-----------------|------|
| <u></u>            | [kN]            | [kN] |
| 1 Pilastri 410 41  | 2 2410 412      | 0    |
| 2 Pilastri 404 41  | 0 5 4 0 4 4 1 0 | 2    |
| 3 Pilastri 401 40  | 5 565 400 404   | 561  |
| 4 Pilastri 399 40  | 1 568 398 400   | 564  |
| 5 Pilastri 397 39  | 9 571 396 398   | 567  |
| 6 Pilastri 395 39  | 7 576 394 396   | 571  |
| 7 Pilastri 393 39  | 5 580 392 394   | 575  |
| 8 Pilastri 391 39  | 3 585 390 392   | 580  |
| 9 Pilastri 389 39  | 1 590 388 390   | 585  |
| 10 Pilastri 387 38 | 9 596 386 388   | 590  |
| 11 Pilastri 385 38 | 7 602 384 386   | 596  |
| 12 Pilastri 383 38 | 5 609 382 384   | 602  |
| 13 Pilastri 381 38 | 3 616 380 382   | 609  |
| 14 Pilastri 379 38 | 1 623 378 380   | 616  |
| 15 Pilastri 377 37 | 9 631 376 378   | 623  |
| 16 Pilastri 329 37 | 7 639 328 376   | 631  |
| 17 Pilastri 252 32 | 9 647 251 328   | 639  |
| 18 Pilastri 94 23  | 0 663 225 251   | 647  |

## Max 663 Min 0 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 51 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

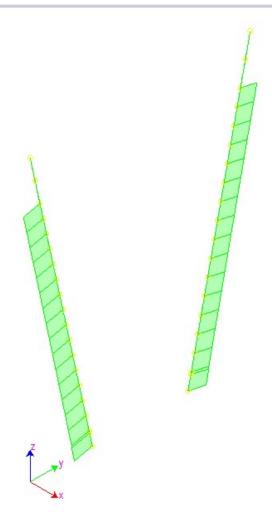


Sforzo assiale Piloni - Comb. 1 SLU

| Sez             | Max              | Min  |
|-----------------|------------------|------|
| Sez             | [kN]             | [kN] |
| 1 Pilastri 410  | 412 2410 412     | 0    |
| 2 Pilastri 404  | 410 5 404 410    | 2    |
| 3 Pilastri 401  | 405 1070 400 404 | 1063 |
| 4 Pilastri 399  | 401 1073 398 400 | 1066 |
| 5 Pilastri 397  | 399 1077 396 398 | 1070 |
| 6 Pilastri 395  | 397 1081 394 396 | 1073 |
| 7 Pilastri 393  | 395 1086 392 394 | 1077 |
| 8 Pilastri 391  | 393 1090 390 392 | 1082 |
| 9 Pilastri 389  | 391 1096 388 390 | 1087 |
| 10 Pilastri 387 | 389 1101 386 388 | 1092 |
| 11 Pilastri 385 | 387 1108 384 386 | 1098 |
| 12 Pilastri 383 | 385 1114 382 384 | 1104 |
| 13 Pilastri 381 | 383 1121 380 382 | 1111 |
| 14 Pilastri 379 | 381 1128 378 380 | 1118 |
| 15 Pilastri 377 | 379 1136 376 378 | 1125 |
| 16 Pilastri 329 | 377 1144 328 376 | 1133 |
| 17 Pilastri 252 | 329 1153 251 328 | 1141 |
| 18 Pilastri 94  | 230 1177 225 251 | 1149 |

Max 1177 Min 0 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 52 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

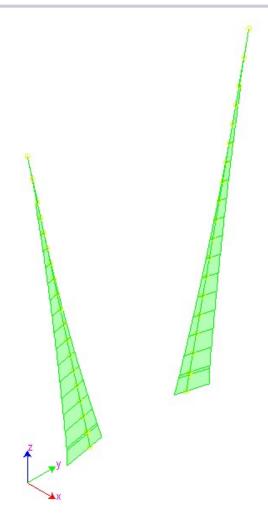


Sforzo assiale Piloni – Inviluppo Combinazioni

| Sez                      | Max               | Min  |
|--------------------------|-------------------|------|
| <u> </u>                 | [kN]              | [kN] |
| 1 Pilastri 410 412 (12)  | 4410 412 (17)     | -1   |
| 2 Pilastri 404 410 (12)  | 9 404 410 (17)    | -0   |
| 3 Pilastri 401 405 (14)  | 1115400 404 (51)  | 429  |
| 4 Pilastri 399 401 (14)  | 1118 398 400 (51) | 431  |
| 5 Pilastri 397 399 (14)  | 1121 396 398 (51) | 434  |
| 6 Pilastri 395 397 (14)  | 1124 394 396 (51) | 436  |
| 7 Pilastri 393 395 (14)  | 1128 392 394 (51) | 440  |
| 8 Pilastri 391 393 (14)  | 1132 390 392 (51) | 443  |
| 9 Pilastri 389 391 (14)  | 1136 388 390 (51) | 447  |
| 10 Pilastri 387 389 (14) | 1141 386 388 (51) | 451  |
| 11 Pilastri 385 387 (14) | 1147 384 386 (51) | 455  |
| 12 Pilastri 383 385 (14) | 1152 382 384 (51) | 459  |
| 13 Pilastri 381 383 (14) | 1159 380 382 (51) | 464  |
| 14 Pilastri 379 381 (14) | 1165 378 380 (51) | 470  |
| 15 Pilastri 377 379 (14) | 1172 376 378 (51) | 475  |
| 16 Pilastri 329 377 (14) | 1180 328 376 (51) | 481  |
| 17 Pilastri 252 329 (14) | 1187 251 328 (51) | 487  |
| 18 Pilastri 94 230 (15)  | 1219 225 251 (51) | 493  |

Max 1219 Min -1 [kN]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 53 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

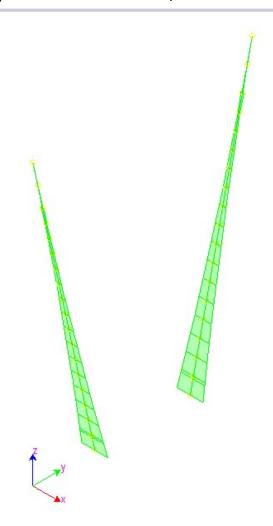


Momento flettente trasversale Piloni – Inviluppo Combinazioni

| Sez                      | Max<br>[kNm]      | Min<br>[kNm] |
|--------------------------|-------------------|--------------|
| 1 Pilastri 410 412 (16)  | 6 411 413 (12)    | -7           |
| 2 Pilastri 405 411 (17)  | 24 405 411 (12)   | -27          |
| 3 Pilastri 401 405 (15)  | 185 401 405 (16)  | 14           |
| 4 Pilastri 399 401 (15)  | 235 399 401 (16)  | 11           |
| 5 Pilastri 397 399 (15)  | 289 397 399 (16)  | 2            |
| 6 Pilastri 395 397 (13)  | 351 394 396 (17)  | -18          |
| 7 Pilastri 393 395 (13)  | 421 392 394 (17)  | -45          |
| 8 Pilastri 391 393 (13)  | 496 390 392 (17)  | -78          |
| 9 Pilastri 389 391 (13)  | 575 388 390 (17)  | -118         |
| 10 Pilastri 387 389 (13) | 659 386 388 (17)  | -164         |
| 11 Pilastri 385 387 (13) | 747 384 386 (17)  | -217         |
| 12 Pilastri 383 385 (13) | 839 382 384 (17)  | -277         |
| 13 Pilastri 381 383 (13) | 936 380 382 (17)  | -343         |
| 14 Pilastri 379 381 (13) | 1037 378 380 (17) | -417         |
| 15 Pilastri 377 379 (13) | 1141 376 378 (17) | -497         |
| 16 Pilastri 329 377 (13) | 1249 328 376 (17) | -585         |
| 17 Pilastri 252 329 (13) | 1360 251 328 (17) | -680         |
| 18 Pilastri 94 230 (13)  | 1562 94 230 (16)  | -808         |

Max 1562 Min -808 [kNm]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 54 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Momento flettente longitudinale Piloni – Inviluppo Combinazioni

| Sez                      | Max              | Min   |
|--------------------------|------------------|-------|
|                          | [kNm]            | [kNm] |
| 1 Pilastri 410 412 (19)  | 7 410 412 (18)   | -7    |
| 2 Pilastri 404 410 (19)  | 26 404 410 (18)  | -26   |
| 3 Pilastri 401 405 (3)   | 101 401 405 (4)  | -101  |
| 4 Pilastri 398 400 (30)  | 89 398 400 (31)  | -90   |
| 5 Pilastri 396 398 (30)  | 121 396 398 (31) | -123  |
| 6 Pilastri 394 396 (30)  | 151 394 396 (31) | -153  |
| 7 Pilastri 392 394 (30)  | 176 392 394 (31) | -179  |
| 8 Pilastri 391 393 (4)   | 223 390 392 (4)  | -221  |
| 9 Pilastri 389 391 (4)   | 277 388 390 (4)  | -275  |
| 10 Pilastri 387 389 (4)  | 331 386 388 (4)  | -328  |
| 11 Pilastri 385 387 (4)  | 385 384 386 (4)  | -381  |
| 12 Pilastri 383 385 (4)  | 438 382 384 (4)  | -434  |
| 13 Pilastri 381 383 (4)  | 492 380 382 (4)  | -487  |
| 14 Pilastri 379 381 (20) | 550 378 380 (20) | -544  |
| 15 Pilastri 377 379 (20) | 627 376 378 (20) | -619  |
| 16 Pilastri 329 377 (20) | 706 328 376 (20) | -698  |
| 17 Pilastri 252 329 (20) | 790 251 328 (20) | -781  |
| 18 Pilastri 94 230 (20)  | 877 93 225 (20)  | -867  |

## Max 877 Min -867 [kNm]

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 55 di 87* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.3 Scarichi in fondazione

#### Valori estratti dal modello con soletta

## 4.3.1 Reazione globale

# Casi elementari di carico

| Caso di carico     | Rx   | Ry   | Rz   |
|--------------------|------|------|------|
| Caso di Carico     | [kN] | [kN] | [kN] |
| pp x 1.2           | 0    | 0    | 533  |
| perm strutturale   | 0    | 0    | 605  |
| perm port          | 0    | 0    | 325  |
| folla area X-Y+    | 0    | 0    | 367  |
| folla area X-Y-    | 0    | 0    | 367  |
| folla area X+Y-    | 0    | 0    | 367  |
| folla area X+Y+    | 0    | 0    | 367  |
| folla long         | -147 | 0    | 0    |
| folla parapetto    | 0    | 0    | 0    |
| vento laterale     | 0    | -96  | 0    |
| vento verticale Z- | 0    | 0    | 147  |
| vento X+ pilone    | -148 | 0    | 0    |
| vento Y+ pilone    | 0    | -148 | 0    |
| DT+                | 0    | 0    | 0    |
| DT-                | 0    | 0    | 0    |
| Pretensione cavi   | 0    | 0    | 0    |
| Earthq. X+         | -453 | 3    | 75   |
| Earthq. Y+         | -2   | -409 | -5   |
| Earthq. Z-         | 29   | -1   | 93   |

## Combinazioni SLU

| Combinazione | Rx   | Ry   | Rz   |
|--------------|------|------|------|
| Combinazione | [kN] | [kN] | [kN] |
| 1            | 0    | 0    | 2024 |
| 2            | 0    | 0    | 4004 |
| 3            | 0    | 0    | 3014 |
| 4            | 0    | 0    | 3014 |
| 5            | 0    | 0    | 3014 |
| 6            | 0    | 0    | 3014 |
| 7            | 0    | 0    | 3014 |
| 8            | 0    | 0    | 3069 |
| 9            | -198 | 0    | 4004 |
| 10           | 198  | 0    | 4004 |
| 11           | 0    | 0    | 4004 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 56 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 12 | 0    | -365 | 3432 |
|----|------|------|------|
| 13 | 0    | 365  | 3432 |
| 14 | 0    | -219 | 4136 |
| 15 | 0    | 219  | 4136 |
| 16 | 0    | -365 | 1683 |
| 17 | 0    | 365  | 1683 |
| 18 | -221 | 0    | 2838 |
| 19 | 221  | 0    | 2838 |
| 20 | -133 | 0    | 3146 |
| 21 | 133  | 0    | 3146 |
| 22 | -221 | 0    | 1683 |
| 23 | 221  | 0    | 1683 |
| 24 | 0    | 0    | 3212 |
| 25 | 0    | 0    | 3212 |

## Combinazioni SLV

| Combinazione | Rx   | Ry   | Rz   |
|--------------|------|------|------|
| Combinazione | [kN] | [kN] | [kN] |
| 26           | 0    | 0    | 1463 |
| 27           | -445 | -120 | 1565 |
| 28           | -463 | -119 | 1509 |
| 29           | -444 | 125  | 1567 |
| 30           | -461 | 126  | 1511 |
| 31           | 461  | -126 | 1415 |
| 32           | 444  | -125 | 1359 |
| 33           | 463  | 119  | 1417 |
| 34           | 445  | 120  | 1362 |
| 35           | -129 | -408 | 1509 |
| 36           | -147 | -407 | 1453 |
| 37           | 143  | -410 | 1464 |
| 38           | 125  | -409 | 1408 |
| 39           | -125 | 409  | 1518 |
| 40           | -143 | 410  | 1462 |
| 41           | 147  | 407  | 1473 |
| 42           | 129  | 408  | 1417 |
| 43           | -107 | -123 | 1577 |
| 44           | -106 | 122  | 1580 |
| 45           | 164  | -125 | 1532 |
| 46           | 166  | 120  | 1535 |
| 47           | -166 | -120 | 1391 |
| 48           | -164 | 125  | 1394 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembr

Novembre 2023 Allegato 1- Pag. 57 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 49 | 106 | -122 | 1346 |
|----|-----|------|------|
| 50 | 107 | 123  | 1349 |

## Combinazioni SLE

| Combinazione | Rx<br>[kN] | Ry<br>[kN] | Rz<br>[kN] |
|--------------|------------|------------|------------|
| 51           | 0          | 0          | 1463       |
| 52           | 0          | 0          | 2930       |
| 53           | 0          | 0          | 2563       |
| 54           | 0          | 0          | 2563       |
| 55           | 0          | 0          | 2196       |
| 56           | 0          | 0          | 2563       |
| 57           | 0          | 0          | 2563       |
| 58           | 0          | 0          | 2196       |
| 59           | -147       | 0          | 2930       |
| 60           | 147        | 0          | 2930       |
| 61           | 0          | 0          | 2930       |
| 62           | 0          | -244       | 2636       |
| 63           | 0          | 244        | 2343       |
| 64           | 0          | -146       | 3018       |
| 65           | 0          | -31        | 3018       |
| 66           | 0          | -244       | 1610       |
| 67           | 0          | -244       | 1610       |
| 68           | 0          | 0          | 2490       |
| 69           | 0          | 0          | 2490       |
| 70           | -148       | 0          | 2123       |
| 71           | 148        | 0          | 2123       |
| 72           | -89        | 0          | 2284       |
| 73           | 89         | 0          | 2284       |
| 74           | -148       | 0          | 1610       |
| 75           | 148        | 0          | 1610       |

# 4.3.2 Reazione globale Spalla sinistra

Si riporta la risultante delle reazioni vincolari riferite al p.to di simmetria

## Combinazioni SLU

| Combinations |      | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 1            | 1    | 0    | 166  | 0     | 0     | 0     |
| 2            | 4    | -1   | 378  | 1     | 0     | 0     |
| 3            | -86  | -1   | 483  | 0     | 0     | 5     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 58 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 4  | 90  | -1  | 61  | 1    | 0 | -4   |
|----|-----|-----|-----|------|---|------|
| 5  | 2   | 3   | 272 | 195  | 0 | 162  |
| 6  | 2   | -12 | 272 | 121  | 0 | 60   |
| 7  | 2   | 11  | 272 | -120 | 0 | -60  |
| 8  | 7   | -5  | 266 | -197 | 0 | -168 |
|    | -   |     |     |      |   |      |
| 9  | 196 | -1  | 362 | 1    | 0 | 0    |
| 10 | 203 | -1  | 395 | 1    | 0 | 1    |
| 11 | 4   | -1  | 378 | 1    | 0 | 1    |
| 12 | 3   | -33 | 317 | 60   | 0 | -28  |
| 13 | 3   | 31  | 317 | -58  | 0 | 28   |
| 14 | 4   | -20 | 392 | 37   | 0 | -16  |
| 15 | 4   | 18  | 392 | -34  | 0 | 17   |
| 16 | 0   | -32 | 133 | 59   | 0 | -28  |
| 17 | 0   | 31  | 133 | -59  | 0 | 28   |
| 18 | -54 | -1  | 98  | 1    | 0 | -3   |
| 19 | 58  | -1  | 409 | 1    | 0 | 4    |
| 20 | 25  | -1  | 58  | 1    | 0 | -5   |
| 21 | -20 | -1  | 515 | 1    | 0 | 5    |
|    | -   |     |     |      |   |      |
| 22 | 108 | 0   | 104 | 0    | 0 | -1   |
| 23 | 109 | 0   | 162 | 0    | 0 | 1    |
| 24 | 20  | -2  | 253 | 0    | 0 | 5    |
| 25 | 11  | -1  | 272 | 0    | 0 | 3    |

#### Combinazioni SLV

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 26           | 0    | 0    | 109  | 0     | 0     | 0     |
| 27           | -401 | -23  | 49   | 45    | 0     | -28   |
| 28           | -421 | -23  | 43   | 45    | 0     | -28   |
| 29           | -400 | 26   | 50   | -47   | 0     | 29    |
| 30           | -420 | 26   | 44   | -47   | 0     | 29    |
| 31           | 419  | -27  | 175  | 47    | 0     | -29   |
| 32           | 400  | -26  | 169  | 47    | 0     | -29   |
| 33           | 420  | 22   | 175  | -45   | 0     | 28    |
| 34           | 401  | 23   | 169  | -45   | 0     | 28    |
| 35           | -115 | -82  | 93   | 153   | 0     | -95   |
| 36           | -135 | -81  | 87   | 153   | 0     | -95   |
| 37           | 131  | -83  | 130  | 154   | 0     | -96   |
| 38           | 111  | -82  | 124  | 153   | 0     | -96   |
| 39           | -112 | 82   | 94   | -153  | 0     | 96    |

Documento:  $Relazione \ tecnica \ delle \ strutture \ metalliche \ - \ Passerella \ ciclopedonale \ Fiume \ Reno \ - \ Allegato \ 1 \ - \ Sasso \ Marconi/Marzabotto$ 

Codice: REL\_6\_4 Data:

Novembre 2023

Allegato 1- Pag. 59 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 40 | -132 | 82  | 88  | -153 | 0 | 96  |
|----|------|-----|-----|------|---|-----|
| 41 | 134  | 81  | 132 | -153 | 0 | 95  |
| 42 | 115  | 81  | 126 | -153 | 0 | 95  |
| 43 | -91  | -25 | 100 | 46   | 0 | -29 |
| 44 | -90  | 24  | 101 | -46  | 0 | 29  |
| 45 | 155  | -26 | 138 | 47   | 0 | -29 |
| 46 | 156  | 23  | 138 | -45  | 0 | 28  |
| 47 | -157 | -24 | 80  | 45   | 0 | -29 |
| 48 | -156 | 25  | 81  | -47  | 0 | 29  |
| 49 | 90   | -25 | 118 | 46   | 0 | -29 |
| 50 | 91   | 24  | 119 | -46  | 0 | 28  |

#### Combinazioni SLE

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 51           | 0    | 0    | 109  | 0     | 0     | 0     |
| 52           | 2    | -1   | 267  | 1     | 0     | 0     |
| 53           | -31  | -1   | 305  | 0     | 0     | 2     |
| 54           | 34   | -1   | 149  | 1     | 0     | -2    |
| 55           | 1    | 2    | 188  | 144   | 0     | 120   |
| 56           | 2    | -5   | 227  | 45    | 0     | 22    |
| 57           | 1    | 4    | 227  | -44   | 0     | -22   |
| 58           | 1    | -3   | 188  | -143  | 0     | -120  |
| 59           | -146 | -1   | 254  | 0     | 0     | 0     |
| 60           | 150  | -1   | 279  | 1     | 0     | 0     |
| 61           | 2    | -1   | 267  | 1     | 0     | 0     |
| 62           | 2    | -22  | 235  | 40    | 0     | -19   |
| 63           | 1    | 20   | 204  | -39   | 0     | 19    |
| 64           | 2    | -13  | 276  | 24    | 0     | -11   |
| 65           | 2    | 10   | 276  | -25   | 0     | 6     |
| 66           | 0    | -21  | 125  | 40    | 0     | -19   |
| 67           | 0    | -21  | 125  | 40    | 0     | -19   |
| 68           | 13   | -1   | 193  | 0     | 0     | 3     |
| 69           | 7    | -1   | 205  | 0     | 0     | 2     |
| 70           | -48  | -1   | 134  | 0     | 0     | -2    |
| 71           | 51   | -1   | 282  | 0     | 0     | 2     |
| 72           | -9   | -1   | 147  | 1     | 0     | -2    |
| 73           | 12   | -1   | 326  | 0     | 0     | 2     |
| 74           | -72  | 0    | 106  | 0     | 0     | -1    |
| 75           | 72   | 0    | 144  | 0     | 0     | 0     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 60 di 87* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 4.3.3 Reazione globale Pila centrale

Si riporta la risultante delle reazioni vincolari riferite al p.to di simmetria

#### Combinazioni SLU

| Cambination. | Rx   | Ry   | Rz   | Мx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 1            | -1   | 1    | 1692 | 0     | -10   | 0     |
| 2            | -4   | 2    | 3249 | -2    | -64   | 0     |
| 3            | 86   | 1    | 2480 | -1    | 1305  | 0     |
| 4            | -90  | 2    | 2462 | -1    | -1379 | 0     |
| 5            | -2   | -5   | 2471 | 3     | -40   | -152  |
| 6            | -2   | 26   | 2471 | 686   | -37   | 1     |
| 7            | -2   | -23  | 2471 | -689  | -36   | -1    |
| 8            | -7   | 11   | 2513 | 32    | -110  | 161   |
| 9            | -2   | 2    | 3270 | -2    | -43   | 0     |
| 10           | -5   | 2    | 3228 | -2    | -84   | 0     |
| 11           | -4   | 2    | 3249 | -2    | -64   | 0     |
| 12           | -3   | -301 | 2799 | 2667  | -48   | -1    |
| 13           | -3   | 305  | 2800 | -2671 | -48   | 1     |
| 14           | -4   | -179 | 3353 | 1599  | -68   | 0     |
| 15           | -4   | 184  | 3353 | -1604 | -67   | 0     |
| 16           | 0    | -302 | 1417 | 2669  | -2    | -1    |
| 17           | 0    | 304  | 1418 | -2669 | -2    | 1     |
| 18           | -168 | 2    | 2338 | -1    | -1345 | 0     |
| 19           | 164  | 1    | 2327 | -1    | 1281  | 0     |
| 20           | -158 | 2    | 2572 | -2    | -1687 | 0     |
| 21           | 153  | 1    | 2577 | -1    | 1607  | 1     |
| 22           | -113 | 1    | 1429 | 0     | -510  | 0     |
| 23           | 113  | 1    | 1406 | 0     | 506   | 0     |
| 24           | -20  | 4    | 2714 | 0     | -331  | 0     |
| 25           | -11  | 3    | 2673 | -1    | -194  | 0     |

#### Combinazioni SLV

| Combinazione |      | Rx   | Ry   | Rz    | Mx    | My    | Mz |
|--------------|------|------|------|-------|-------|-------|----|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |    |
|              | 26   | 0    | 1    | 1244  | 0     | 4     | 0  |
|              | 27   | -44  | -74  | 1402  | 546   | -72   | -3 |
|              | 28   | -42  | -73  | 1358  | 545   | -67   | -3 |
|              | 29   | -44  | 74   | 1404  | -160  | -72   | 3  |
|              | 30   | -42  | 75   | 1360  | -161  | -67   | 3  |
|              | 31   | 42   | -74  | 1128  | 161   | 76    | -3 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 61 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:progetto} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 32 | 44  | -73  | 1085 | 160   | 81  | -3 |
|----|-----|------|------|-------|-----|----|
| 33 | 42  | 74   | 1130 | -545  | 76  | 3  |
| 34 | 44  | 75   | 1087 | -546  | 81  | 3  |
| 35 | -14 | -246 | 1304 | 1236  | -21 | -9 |
| 36 | -12 | -246 | 1260 | 1235  | -16 | -9 |
| 37 | 12  | -246 | 1222 | 1120  | 24  | -9 |
| 38 | 14  | -246 | 1178 | 1119  | 29  | -9 |
| 39 | -14 | 247  | 1310 | -1119 | -20 | 9  |
| 40 | -11 | 248  | 1267 | -1120 | -15 | 9  |
| 41 | 12  | 247  | 1228 | -1235 | 24  | 9  |
| 42 | 14  | 248  | 1185 | -1236 | 29  | 9  |
| 43 | -16 | -74  | 1357 | 413   | -26 | -3 |
| 44 | -16 | 74   | 1359 | -294  | -26 | 3  |
| 45 | 9   | -74  | 1275 | 297   | 18  | -3 |
| 46 | 9   | 74   | 1277 | -409  | 18  | 3  |
| 47 | -9  | -73  | 1212 | 409   | -10 | -3 |
| 48 | -9  | 75   | 1214 | -297  | -10 | 3  |
| 49 | 17  | -73  | 1130 | 294   | 35  | -3 |
| 50 | 17  | 75   | 1132 | -413  | 35  | 3  |

#### Combinazioni SLE

| Combinations | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 51           | 0    | 1    | 1244 | 0     | 4     | 0     |
| 52           | -2   | 2    | 2397 | -1    | -36   | 0     |
| 53           | 31   | 1    | 2112 | -1    | 471   | 0     |
| 54           | -34  | 1    | 2106 | -1    | -523  | 0     |
| 55           | -1   | -4   | 1821 | 3     | -18   | -113  |
| 56           | -2   | 10   | 2109 | 254   | -26   | 1     |
| 57           | -2   | -8   | 2109 | -256  | -26   | -1    |
| 58           | -1   | 6    | 1821 | -4    | -14   | 113   |
| 59           | -1   | 1    | 2413 | -1    | -21   | 0     |
| 60           | -3   | 2    | 2382 | -1    | -51   | 0     |
| 61           | -2   | 2    | 2397 | -1    | -36   | 0     |
| 62           | -2   | -201 | 2167 | 1778  | -28   | 0     |
| 63           | -1   | 203  | 1936 | -1780 | -20   | 0     |
| 64           | -2   | -120 | 2466 | 1066  | -38   | 0     |
| 65           | -2   | -52  | 2467 | 813   | -38   | 0     |
| 66           | 0    | -201 | 1360 | 1779  | 0     | 0     |
| 67           | 0    | -201 | 1360 | 1779  | 0     | 0     |
| 68           | -13  | 3    | 2110 | 0     | -216  | 0     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 62 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

| 69 | -7  | 2 | 2082 | 0  | -125 | 0 |
|----|-----|---|------|----|------|---|
| 70 | -99 | 1 | 1970 | -1 | -707 | 0 |
| 71 | 97  | 1 | 1960 | -1 | 666  | 0 |
| 72 | -79 | 1 | 2179 | -1 | -729 | 0 |
| 73 | 76  | 1 | 2177 | -1 | 672  | 0 |
| 74 | -75 | 1 | 1367 | 0  | -338 | 0 |
| 75 | 75  | 1 | 1352 | 0  | 339  | 0 |

#### 4.3.4 Reazione globale Pila destra

Si riporta la risultante delle reazioni vincolari riferite al p.to di simmetria

#### Combinazioni SLU

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 1            | 0    | 0    | 166  | 0     | 0     | 0     |
| 2            | 0    | -1   | 377  | 1     | 0     | 0     |
| 3            | 0    | -1   | 51   | 1     | 0     | 0     |
| 4            | 0    | -1   | 491  | 1     | 0     | 0     |
| 5            | 0    | 3    | 271  | -199  | 0     | 0     |
| 6            | 0    | -14  | 271  | 123   | 0     | 0     |
| 7            | 0    | 12   | 271  | -122  | 0     | 0     |
| 8            | 0    | -5   | 289  | 218   | 0     | 0     |
| 9            | 0    | -1   | 373  | 1     | 0     | 0     |
| 10           | 0    | -1   | 381  | 1     | 0     | 0     |
| 11           | 0    | -1   | 377  | 1     | 0     | 0     |
| 12           | 0    | -32  | 316  | 59    | 0     | 0     |
| 13           | 0    | 30   | 316  | -57   | 0     | 0     |
| 14           | 0    | -20  | 391  | 36    | 0     | 0     |
| 15           | 0    | 17   | 391  | -34   | 0     | 0     |
| 16           | 0    | -31  | 133  | 58    | 0     | 0     |
| 17           | 0    | 31   | 133  | -58   | 0     | 0     |
| 18           | 0    | -1   | 402  | 1     | 0     | 0     |
| 19           | 0    | -1   | 103  | 0     | 0     | 0     |
| 20           | 0    | -1   | 516  | 1     | 0     | 0     |
| 21           | 0    | -1   | 54   | 1     | 0     | 0     |
| 22           | 0    | 0    | 151  | 0     | 0     | 0     |
| 23           | 0    | 0    | 115  | 0     | 0     | 0     |
| 24           | 0    | -2   | 245  | 0     | 0     | 0     |
| 25           | 0    | -2   | 267  | 0     | 0     | 0     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 63 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

#### Combinazioni SLV

| Combinazione | Rx<br>[kN] | Ry<br>[kN] | Rz<br>[kN] | Mx<br>[kNm] | My<br>[kNm] | Mz<br>[kNm] |
|--------------|------------|------------|------------|-------------|-------------|-------------|
| 26           | 0          | 0          | 109        | 0           | 0           | 0           |
| 27           | 0          | -23        | 114        | 0           | 0           | 0           |
| 28           | 0          | -23        | 107        | -1          | 0           | 0           |
| 29           | 0          | 25         | 114        | -85         | 0           | 0           |
| 30           | 0          | 25         | 107        | -86         | 0           | 0           |
| 31           | 0          | -26        | 112        | 86          | 0           | 0           |
| 32           | 0          | -26        | 105        | 85          | 0           | 0           |
| 33           | 0          | 22         | 112        | 1           | 0           | 0           |
| 34           | 0          | 22         | 105        | 0           | 0           | 0           |
| 35           | 0          | -80        | 113        | 129         | 0           | 0           |
| 36           | 0          | -80        | 106        | 129         | 0           | 0           |
| 37           | 0          | -81        | 112        | 155         | 0           | 0           |
| 38           | 0          | -81        | 105        | 154         | 0           | 0           |
| 39           | 0          | 80         | 113        | -154        | 0           | 0           |
| 40           | 0          | 80         | 107        | -155        | 0           | 0           |
| 41           | 0          | 79         | 113        | -129        | 0           | 0           |
| 42           | 0          | 80         | 106        | -129        | 0           | 0           |
| 43           | 0          | -24        | 121        | 30          | 0           | 0           |
| 44           | 0          | 24         | 121        | -55         | 0           | 0           |
| 45           | 0          | -25        | 120        | 56          | 0           | 0           |
| 46           | 0          | 23         | 120        | -29         | 0           | 0           |
| 47           | 0          | -23        | 99         | 29          | 0           | 0           |
| 48           | 0          | 25         | 99         | -56         | 0           | 0           |
| 49           | 0          | -24        | 98         | 55          | 0           | 0           |
| 50           | 0          | 24         | 98         | -30         | 0           | 0           |

#### Combinazioni SLE

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 51           | 0    | 0    | 109  | 0     | 0     | 0     |
| 52           | 0    | -1   | 266  | 1     | 0     | 0     |
| 53           | 0    | -1   | 145  | 0     | 0     | 0     |
| 54           | 0    | -1   | 308  | 0     | 0     | 0     |
| 55           | 0    | 2    | 188  | -147  | 0     | 0     |
| 56           | 0    | -5   | 227  | 46    | 0     | 0     |
| 57           | 0    | 4    | 227  | -45   | 0     | 0     |
| 58           | 0    | -3   | 188  | 148   | 0     | 0     |
| 59           | 0    | -1   | 263  | 1     | 0     | 0     |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 64 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

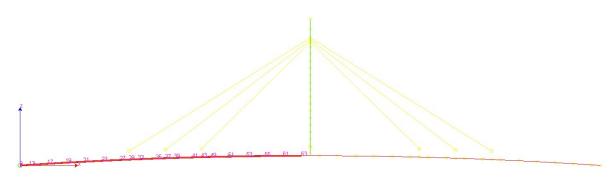
 $\label{eq:problem} \mbox{PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto$ 

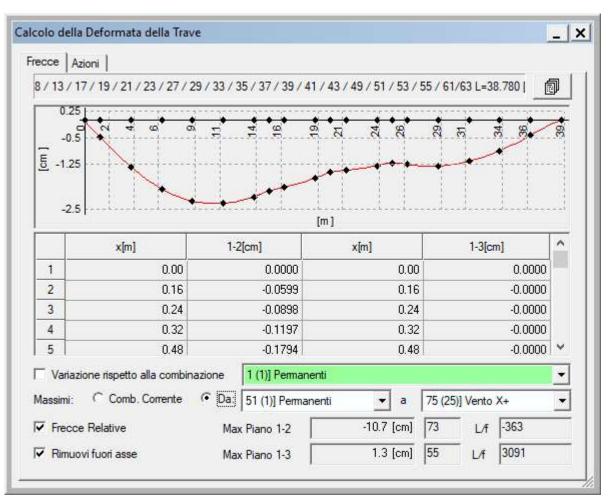
| 60 | 0 | -1  | 269 | 1   | 0 | 0 |
|----|---|-----|-----|-----|---|---|
| 61 | 0 | -1  | 266 | 1   | 0 | 0 |
| 62 | 0 | -21 | 235 | 39  | 0 | 0 |
| 63 | 0 | 20  | 203 | -38 | 0 | 0 |
| 64 | 0 | -13 | 275 | 24  | 0 | 0 |
| 65 | 0 | 10  | 275 | -25 | 0 | 0 |
| 66 | 0 | -21 | 125 | 39  | 0 | 0 |
| 67 | 0 | -21 | 125 | 39  | 0 | 0 |
| 68 | 0 | -1  | 187 | 0   | 0 | 0 |
| 69 | 0 | -1  | 202 | 0   | 0 | 0 |
| 70 | 0 | -1  | 276 | 0   | 0 | 0 |
| 71 | 0 | -1  | 138 | 0   | 0 | 0 |
| 72 | 0 | -1  | 325 | 1   | 0 | 0 |
| 73 | 0 | -1  | 147 | 0   | 0 | 0 |
| 74 | 0 | 0   | 137 | 0   | 0 | 0 |
| 75 | 0 | 0   | 113 | 0   | 0 | 0 |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 65 di 87* 


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5 Verifiche

#### 5.1 Verifiche di deformabilità

Calcolo del rapporto Luce/freccia su campata L = 40m:





Rapporto Luce/freccia = 363

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 Allegato 1- Pag. 66 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.2 Verifiche di comfort vibrazionale dei pedoni

Con riferimento al documento "Hivoss "Human induced vibrations of steel structures" – RFS2-CT-2007-00033 – Design of footbridges – Guideline" si è operato un confronto tra le frequenze naturali della passerella e quelle all'interno dell'intervallo "critico" indicato al p.to 4.2 di seguito riportato:

#### 4.2 Step 2: Check of critical range of natural frequencies

The critical ranges for natural frequencies  $f_i$  of footbridges with pedestrian excitation are:

for vertical and longitudinal vibrations:

 $1,25 \text{ Hz} \le f_i \le 2,3 \text{ Hz}$ 

• for lateral vibrations: 0,5 Hz  $\leq f_i \leq$  1,2 Hz

Footbridges with frequencies for vertical or longitudinal vibrations of

2,5 Hz  $\leq f_i \leq 4,6$  Hz

might be excited to resonance by the  $2^{nd}$  harmonic of pedestrian loads [1]. In that case, the critical frequency range for vertical and longitudinal vibrations expands to:

$$1,25$$
Hz  $\leq f_i \leq 4,6$ Hz

Lateral vibrations are not effected by the 2<sup>nd</sup> harmonic of pedestrian loads.

<u>Note:</u> A vertical vibration excitation by the second harmonic of pedestrian forces might take place. Until now there is no hint in the literature that onerous vibration of footbridges due to the second harmonic of pedestrians have occurred.

Di seguitosono riportate le frequenze naturali e l'esito del controllo:

| f [Hz] | T [sec] | Dir. | Check        |                                    |
|--------|---------|------|--------------|------------------------------------|
| 1.14   | 0.88    | Z    | Not Critical | 1o antimetrico                     |
| 1.64   | 0.61    | Υ    | Not Critical | 10 laterale-torsionale antimetrico |
| 2.22   | 0.45    | Υ    | Not Critical | 1o torsionale antimetrico          |
| 2.33   | 0.43    | Z    | Not Critical | 1o torsionale antimetrico          |

Si osserva che le frequenze principali sono fuori dal range critico.

In fase di sviluppo del progetto esecutivo saranno comunque approfondite le analisi di verifica del comfort.

# 5.3 Dimensionamento delle ampiezze del giunto longitudinale tra l'impalcato e la pila destra

Il vincolo longitudinale è localizzato sulla spalla sinistra mentre in corrispondenza delle pile sono ammessi i movimenti longitudinali. Sulla pila destra è localizzato il giunto longitudinale.

Massimo spostamento longitudinale in corrispondenza della pila desta:

Combinazione SLU DT+ + Folla ux = +8.5cm

Combinazione SLU DT- + Folla ux = -3.5cm

Si dimensiona il giunto longitudinale per una escursione  $\Delta X = \pm 100$ mm.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

 Data:
 Novembre 2023

 Allegato 1- Pag. 67 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.4 Verifica di resistenza delle membrature in acciaio

Si fa riferimento al modello senza soletta equivalente.

#### 5.4.1 Trave reticolare spaziale - Aste

La tabella successiva riporta in % e in numero gli elementi (divisi per famiglie) che ricadono nei diversi intervalli del tasso di utilizzazione Sd/Sr.

Distribuzione degli elementi (n. di elementi in ogni campo)

| Sezione<br>Numero |                                                         | Sd/Sr ≤<br>33% | Sd/Sr ≤<br>66% | II -          | Sd/Sr ≤<br>100% | Sd/Sr ><br>100% |
|-------------------|---------------------------------------------------------|----------------|----------------|---------------|-----------------|-----------------|
| 101               | CHS_EN10219 244.5X12.0/Corrente Long Inf                | 7.89 (3)       | 50.00 (19)     | 31.58<br>(12) | 10.53 (4)       | 0.00 (0)        |
| 111               | CHS_EN10219 244.5X12.5/Corrente Long Infrinf            | 0.00 (0)       | 0.00 (0)       | 0.00 (0)      | 0.00 (0)        | 100.00 (1)      |
| 201               | CHS_EN10219 114.3X5.0/Diagonali di Parete               | 45.31 (58)     | 40.63 (52)     | 6.25 (8)      | 7.03 (9)        | 0.00 (0)        |
| 301               | CHS_EN10219 177.8X8.0/Corrente Long Sup                 | 5.00 (2)       | 70.00 (28)     | 15.00 (6)     | 10.00 (4)       | 0.00 (0)        |
| 311               | CHS_EN10219 177.8X12.0/Corrente Long Sup Rinf           | 16.67 (4)      | 50.00 (12)     | 33.33 (8)     | 0.00 (0)        | 0.00 (0)        |
| 401               | CHS_EN10219 114.3X5.0/Traversi Sup                      | 66.67 (20)     | 33.33 (10)     | 0.00 (0)      | 0.00 (0)        | 0.00 (0)        |
| 501               | CHS_EN10219 114.3X6.0/Diagonali Orizzontali<br>Reticola | 6.25 (2)       | 75.00 (24)     | 12.50 (4)     | 6.25 (2)        | 0.00 (0)        |
| 601               | CHS_EN10219 177.8X8.0/Aste Aggancio Impalcato           | 81.01 (64)     | 18.99 (15)     | 0.00 (0)      | 0.00 (0)        | 0.00 (0)        |
| 701               | CHS_EN10219 177.8X8.0/Ritegno trasversale               | 0.00 (0)       | 100.00 (2)     | 0.00 (0)      | 0.00 (0)        | 0.00 (0)        |
| 103               | CHS_EN10219 177.8X8.0/Appoggi centrali                  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)      | 0.00 (0)        | 0.00 (0)        |

#### Elementi maggiormente sollecitati

| Sezione                                                  | Max<br>Elemento nodi | Max Sd/Sr |
|----------------------------------------------------------|----------------------|-----------|
| 101 CHS_EN10219 244.5X12.0/Corrente Long Inf             | 27 23                | 0.83      |
| 111 CHS_EN10219 244.5X12.5/Corrente Long Inf rinf        | 64 63                | 1.01 (*)  |
| 201 CHS_EN10219 114.3X5.0/Diagonali di Parete            | 224 64               | 1.03 (*)  |
| 202 CHS_EN10219 114.3X8.0/Diagonali di Parete            | 200 186              | 0.85      |
| 301 CHS_EN10219 177.8X8.0/Corrente Long Sup              | 112 98               | 0.78      |
| 311 CHS_EN10219 177.8X12.0/Corrente Long Sup Rinf        | 126 128              | 0.66      |
| 401 CHS_EN10219 114.3X5.0/Traversi Sup                   | 58 48                | 0.93      |
| 501 CHS_EN10219 114.3X6.0/Diagonali Orizzontali Reticola | 227 228              | 0.5       |
| 601 CHS_EN10219 177.8X8.0/Aste Aggancio Impalcato        | 226 227              | 0.34      |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 Allegato 1- Pag. 68 di 87



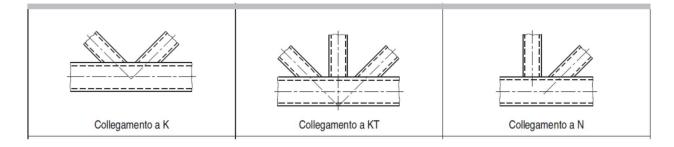
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 701 CHS_EN10219 177.8X8.0/Ritegno trasversale | 27 23  | 0.83 |
|-----------------------------------------------|--------|------|
| 103 CHS_EN10219 177.8X8.0/Appoggi centrali    | 31 227 | 0.41 |

<sup>(\*)</sup> Verifica non soddisfatta: trattandosi di una sola asta, si procederà a rinforzo locale.

#### 5.4.2 Trave reticolare spaziale - Nodi


La tipologia di nodo tipica prevista nel progetto per la trave reticolare spaziale consiste nella saldatura diretta tra tubi circolari: le aste di parete (diagonali, traversi e diagonali di falda) vengono saldate sui correnti superiori ed inferiore in modo da realizzare in officina moduli di trave di lunghezza tale da poter essere trasportabili in cantiere.



Esempio di reticolo spaziale realizzato mediante tubi circolare saldati tra loro

La resistenza dei i nodi ottenuti mediante saldatura diretta tra tubi è normata da EN1993-1-8 cap. 7.

Le tipologie di nodo previste sono la "K", la "KT" e la "N" secondo le figure seguenti:



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 69 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Le modalità di collasso previste sono le seguenti

figura 7.2 Modalità di collasso per collegamenti tra membrature con sezioni tipo CHS

| Modalità | Sforzo normale | Momento flettente |
|----------|----------------|-------------------|
| a        |                | A-A A-A A-A       |
| b        |                |                   |
| С        |                |                   |
| d        |                |                   |
| е        |                |                   |
| f        |                |                   |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 70 di 87* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Le procedure di verifica sono valide sotto le seguenti condizioni:

- spessori compresi tra 2.5mm e 25mm;
- angoli fra le aste concorrenti maggiori 30deg;
- in caso di sovrapposizione, il tubo con diametro maggiore (o di spessore maggiore nel caso di diametri uguali) interrompe quello di diametro minore (o di spessore minore);
- caratteristiche delle saldature (p.to 7.3.1):
  - (1)P Le saldature che connettono le membrature diagonali ai correnti devono essere progettate in modo da avere sufficiente resistenza, per consentire la distribuzione di tensioni non uniformi, e sufficiente capacità deformativa, per consentire la ridistribuzione dei momenti flettenti.
  - (2) Nei collegamenti saldati, si raccomanda che la connessione sia generalmente realizzata intorno all'intero perimetro della sezione cava mediante saldature di testa, a cordoni d'angolo oppure una combinazione delle due. Comunque nei collegamenti a parziale sovrapposizione, non è necessario eseguire la saldatura sulla parte nascosta della connessione, a condizione che gli sforzi normali nelle membrature diagonali siano tali che le loro componenti perpendicolari all'asse del corrente non differiscano più del 20%.
  - (4) Si raccomanda che la resistenza di progetto della saldatura per unità di lunghezza di perimetro della membratura diagonale generalmente non risulti minore della resistenza di progetto della sezione trasversale di quella membratura per unità di lunghezza di perimetro.
- rapporti diametro/spessore, limiti di sovrapposizione e di separazione:

Campo di validità per collegamenti saldati tra membrature diagonali con sezione circolare cava e correnti con sezione circolare cava

| Rapporto dei diametri |              | $0.2 \le d/d_0 \le 1.0$                                                                                 |  |  |  |  |  |
|-----------------------|--------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Correnti              | Trazione     | $0 \le d_0/t_0 \le 50$ (generalmente) ma: $10 \le d_0/t_0 \le 40$ (per giunti a X)                      |  |  |  |  |  |
|                       | Compressione | Classe 1 oppure 2 e $10 \le d_0/t_0 \le 50$ (generalmente) ma: $10 \le d_0/t_0 \le 40$ (per giunti a X) |  |  |  |  |  |
| Diagonali             | Trazione     | $d_i/t_i \le 50$                                                                                        |  |  |  |  |  |
|                       | Compressione | Classe 1 oppure 2                                                                                       |  |  |  |  |  |
| Sovrapposizione       |              | $25\% \le \lambda_{ov} \le \lambda_{ov,lim.}$ , vedere punto 7.1.2(6)                                   |  |  |  |  |  |
| Separazione (gap)     |              | $g \ge t_1 + t_2$                                                                                       |  |  |  |  |  |

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice:REL\_6\_4Data:Novembre 2023Allegato 1- Pag. 71 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Esito del controllo delle condizioni:

- i nodi tipici del corrente inferiore hanno caratteristiche che ottemperano le condizioni geometriche di cui prima. Gli esiti delle verifiche sono positivi.

Si riporta l'output della verifica per il nodo 64:

Verifica punching shear piano

| Asta nodi | KAZIANA                    | Profilo<br>[mm] | d/t   | Eccentricità<br>[mm] | Angolo<br>[deg] |
|-----------|----------------------------|-----------------|-------|----------------------|-----------------|
| 64 63     | 111 CHS_EN10219 244.5X12.5 | 244.5 x 12.5    | 19.56 | 0.0                  | 0.00000         |
| 64 228    | 201 CHS_EN10219 114.3X5.0  | 114.3 x 5.0     | 22.86 | 0.0                  | 47.70557        |
| 224 64    | 201 CHS_EN10219 114.3X5.0  | 114.3 x 5.0     | 22.86 | 0.0                  | 47.61661        |
| 64 62     | 101 CHS_EN10219 244.5X12.0 | 244.5 x 12.0    | 20.38 | 0.0                  | -0.20003        |

μ 0.90
Verifiche secondo EC3 1993-1-8 - schema K o N
Combinazione critica 8
Corrente CHS\_EN10219 244.5X12.5
do 244.5 [mm]
to 12.5 [mm]
g 68.1 [mm]
kg 1.69
Np,Ed 1074 [kN]
Mip,0,Ed 20 [kNm]
Mop,0,Ed -17 [kNm]
SEd/SRd 0.76

|           |                     | 4     | + N             | М     | M <sub>o,Ed</sub> σ <sub>p,Ed</sub> |        |       | <b>Punching Shear Chord Failure</b> |                           |                               |     |                               |
|-----------|---------------------|-------|-----------------|-------|-------------------------------------|--------|-------|-------------------------------------|---------------------------|-------------------------------|-----|-------------------------------|
| Asta      | Profilo             | [mm]  | t N<br>[mm][kN] | [kNm] | [kNm]                               | [MPa]  | n     | Кp                                  | N <sub>i,Rd</sub><br>[kN] | M <sub>ip,1,Rd</sub><br>[kNm] | ,   | M <sub>op,1,Rd</sub><br>[kNm] |
| 64 228 CH | HS_EN10219 114.3X5. | 114.3 | 5.0 -431        | . 0   | 2                                   | 168.07 | 0.473 | 0.791                               | 1463                      | 49                            | 660 | 29                            |
| 224 64 CH | IS_EN10219 114.3X5. | 114.3 | 5.0 424         | . 1   | -3                                  | 186.08 | 0.524 | 0.760                               | 1466                      | 49                            | 635 | 28                            |

- nodi tipici del corrente superiore
  - o configurazione nel piano inclinato: la separazione "g" NON ottempera le condizioni richieste
  - o configurazione nel piano orizzontale a 5 aste: la sovrapposizione " $\lambda$ " NON ottempera le condizioni richieste
  - o configurazione nel piano orizzontale a 3 aste: le condizioni richieste sono ottemperate.

Si riporta l'output della verifica per il nodo 57:

Piano orizzontale - Verifica punching shear piano

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 72 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| Asta nodi | Sezione                    | Profilo<br>[mm] | d/t   | Eccentricità<br>[mm] | Angolo<br>[deg] |
|-----------|----------------------------|-----------------|-------|----------------------|-----------------|
| 57 45     | 311 CHS_EN10219 177.8X12.0 | 177.8 x 12.0    | 14.82 | 0.0                  | 0.00000         |
| 47 57     | 501 CHS_EN10219 114.3X6.0  | 114.3 x 6.0     | 19.05 | 0.0                  | 30.66867        |
| 57 59     | 401 CHS_EN10219 114.3X5.0  | 114.3 x 5.0     | 22.86 | 0.0                  | 90.00000        |
| 57 67     | 501 CHS_EN10219 114.3X6.0  | 114.3 x 6.0     | 19.05 | 0.0                  | 30.96623        |
| 65 57     | 311 CHS_EN10219 177.8X12.0 | 177.8 x 12.0    | 14.82 | 0.0                  | 0.00000         |
| μ 0.90    |                            |                 |       |                      |                 |

ATTENZIONE NODO NON VERIFICABILE

Asta 47 57 λo=8.60 < 25

Asta 57 59 λo=8.60 < 25

Asta 57 67 λo=17.56 < 25

Verifiche secondo EC3 1993-1-8 - schema KT

Combinazione critica 5

Corrente CHS\_EN10219 177.8X12.0

do 177.8 [mm]

to 12.0 [mm]

g0,1 -19.3 [mm]

g1,2 -20.1 [mm]

kg,01 1.85

kg,12 1.85

kg,23 1.85

Np,Ed 23 [kN]

Mip,0,Ed 1 [kNm]

Mop,0,Ed 1 [kNm]

**SEd/SRd 0.23** 

|                        |                    | a     |           | N    | M: Ed Ma E |                | J Ed           |        |       | <b>Punching Shear Chord Failure</b> |       |      |          |
|------------------------|--------------------|-------|-----------|------|------------|----------------|----------------|--------|-------|-------------------------------------|-------|------|----------|
| Asta                   | Profilo            | [mm]  | ں<br>[mm] | [kN] | [kNm]      | Mo,Ed<br>[kNm] | op,⊑u<br>[MPa] | n      | kp    |                                     |       |      | Mop,1,Rd |
|                        |                    |       |           |      |            |                |                |        |       | [kN]                                | [kNm] | [kN] | [kNm]    |
| 47 57 CHS <sub>-</sub> | _EN10219 114.3X6.0 | 114.3 | 6.0       | 295  | -0         | 3              | 14.41          | 0.0410 | 0.987 | 2563                                | 78    | 1527 | 64       |
| 57 59 CHS              | _EN10219 114.3X5.0 | 114.3 | 5.0       | -29  | -3         | 1              | 65.56          | 0.1850 | 0.934 | 883                                 | 32    | 737  | 31       |
| 57 67 CHS              | EN10219 114.3X6.0  | 114.3 | 6.0       | -205 | 0          | -1             | 10.59          | 0.0300 | 0.991 | 2526                                | 77    | 1520 | 63       |

#### Piano inclinato - Verifica punching shear piano

| Asta nodi | Saziona                    | Profilo<br>[mm] | d/t   | Eccentricità<br>[mm] | Angolo<br>[deg] |
|-----------|----------------------------|-----------------|-------|----------------------|-----------------|
| 57 45     | 311 CHS_EN10219 177.8X12.0 | 177.8 x 12.0    | 14.82 | 0.0                  | 0.00000         |
| 13 57     | 201 CHS_EN10219 114.3X5.0  | 114.3 x 5.0     | 22.86 | 0.0                  | 45.96998        |
| 57 17     | 201 CHS_EN10219 114.3X5.0  | 114.3 x 5.0     | 22.86 | 0.0                  | 49.45179        |
| 65 57     | 311 CHS_EN10219 177.8X12.0 | 177.8 x 12.0    | 14.82 | 0.0                  | 0.20122         |

 $\mu 0.90$ 

#### ATTENZIONE NODO NON VERIFICABILE

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4 Data:

Novembre 2023 Allegato 1- Pag. 73 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Asta 13 57 $\theta$ =45.96998 [deg] e 57 17 $\theta$ =49.45179 [deg] gusset=7.3 < (ti+tj)=10.0 [mm]

Verifiche secondo EC3 1993-1-8 - schema K o N Combinazione critica 8 Corrente CHS\_EN10219 177.8X12.0 do 177.8 [mm] to 12.0 [mm] g 7.3 [mm] kg 1.78 Np,Ed 170 [kN] Mip,0,Ed 4 [kNm] Mop,0,Ed 7 [kNm] SEd/SRd 0.42

|  |            |             |          | d t N Mi,Ed Mo,Ed σp,Ed<br>[mm] [mm] [kN] [kNm] [kNm] [MPa] |          |            |                |        |                | Punching Shear Chord Failure |       |       |          |       |          |
|--|------------|-------------|----------|-------------------------------------------------------------|----------|------------|----------------|--------|----------------|------------------------------|-------|-------|----------|-------|----------|
|  | Asta       | Profilo     |          | u<br>[mm]                                                   | ι<br>mml | ιν<br>Γ៤ΝΠ | MI,⊑u<br>[kNm] | [kNm]  | op,⊑u<br>[MPa] | n                            | kp    | Ni,Rd | Mip,1,Rd | Ni,Rd | Mop,1,Rd |
|  |            |             | []       |                                                             | [KIV]    | [KIVIII]   | [KIVIII]       | [inia] |                |                              | [kN]  | [kNm] | [kN]     | [kNm] |          |
|  | 13 57 CHS_ | EN10219 11  | L4.3X5.0 | 114.3                                                       | 5.0      | 351        | -1             | -3     | 64.380         | .181                         | 0.936 | 1468  | 49       | 992   | 43       |
|  | 57 17 CHS_ | _EN10219 11 | L4.3X5.0 | 114.3                                                       | 5.0      | -253       | -2             | 0      | 82.760         | .233                         | 0.914 | 1346  | 46       | 917   | 40       |

# Si osserva comunque che pur non ottemperando le condizioni geometriche gli esiti delle verifiche sono confortanti (Sd/Sr < 0.70).

In fase di redazione del progetto esecutivo verranno adottate le seguenti strategie (alternative) per la verifica dei nodi del corrente superiore:

- 1) verifiche dettagliate mediante modellazione FEM del nodo;
- 2) modifica geometrica del nodo al fine di rispettare nelle condizioni geometriche:

#### Nel piano inclinato:

sostituzione del tubo utilizzato per il corrente superiore da CHS 177.8x8 a CHS 193.7x6.3 (-14% in termini di peso) o CHS 193.7x 8 (+10% in termini di peso).

#### Nel piano orizzontale:

introduzione di una eccentricità longitudinale eL > 18mm tra il punto schema del traverso ed i punti schema dei diagonali.

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 74 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.4.3 Pennoni

I pennoni sono aste a sezione variabile soggette prevalentemente a sforzo assiale e flessione deviata.

Ciascun pennone è stato modellato mediante una successione di elementi beam aventi sezione costante di ingombro via via decrescente dal basso verso l'alto.

La verifica è stata condotta con le seguenti assunzioni:

- le sezioni sono assunte di classe ≤ 3 in virtù degli irrigidimenti longitudinali e trasversali previsti nella parte iniziale di ciascun pennone dove il rapporto L/t dei piatti componenti il cassone trapezoidale sarebbe tale portare la sezione in classe 4 in assenza di essi;
- 2) si è determinato il moltiplicatore di buckling del pennone nella configurazione di massimo sforzo di compressione. Noto quindi il carico critico euleriano del pennone è stato determinato il coefficiente atto a definire la lunghezza libera d'inflessione di ciascun concio in modo da tenere conto della snellezza del pennone e gli effetti delle imperfezioni in accordo con le formule di verifiche di instabilità di normativa.

La tabella successiva riporta in % e in numero gli elementi (divisi per famiglie) che ricadono nei diversi intervalli del tasso di utilizzazione Sd/Sr.

Distribuzione degli elementi (n. di elementi in ogni campo). (Il numero della sezione è crescente dall'alto al basso di ciascun pennone).

| Sezione<br>Numero | Sezione<br>tipo                          | Sd/Sr ≤<br>33% | Sd/Sr ≤<br>66% | Sd/Sr ≤<br>80% | Sd/Sr ≤<br>100% | Sd/Sr≥<br>100% |
|-------------------|------------------------------------------|----------------|----------------|----------------|-----------------|----------------|
| 1                 | CassoniPasserellaReno Concio750/Pilone   | 100.00 (2)     | 0.00 (0)       | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 2                 | CassoniPasserellaReno Concio2250/Pilone  | 100.00 (2)     | 0.00 (0)       | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 3                 | CassoniPasserellaReno Concio3500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 4                 | CassoniPasserellaReno Concio4500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 5                 | CassoniPasserellaReno Concio5500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 6                 | CassoniPasserellaReno Concio6500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 7                 | CassoniPasserellaReno Concio7500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 8                 | CassoniPasserellaReno Concio8500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 9                 | CassoniPasserellaReno Concio9500/Pilone  | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 10                | CassoniPasserellaReno Concio10500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 11                | CassoniPasserellaReno Concio11500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 12                | CassoniPasserellaReno Concio12500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 13                | CassoniPasserellaReno Concio13500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 14                | CassoniPasserellaReno Concio14500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 15                | CassoniPasserellaReno Concio15500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 16                | CassoniPasserellaReno Concio16500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 17                | CassoniPasserellaReno Concio17500/Pilone | 0.00 (0)       | 100.00 (2)     | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |
| 18                | CassoniPasserellaReno Concio18500/Pilone | 50.00 (2)      | 50.00 (2)      | 0.00 (0)       | 0.00 (0)        | 0.00 (0)       |

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 75 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Elementi maggiormente sollecitati

| Sezione                                     | Max<br>Elemento nodi | Max S <sub>D</sub> /S <sub>R</sub> |
|---------------------------------------------|----------------------|------------------------------------|
| 1 CassoniPasserellaReno Concio750/Pilone    | 411 413              | 0.04                               |
| 2 CassoniPasserellaReno Concio2250/Pilone   | 404 410              | 0.06                               |
| 3 CassoniPasserellaReno Concio3500/Pilone   | 401 405              | 0.46                               |
| 4 CassoniPasserellaReno Concio4500/Pilone   | 399 401              | 0.42                               |
| 5 CassoniPasserellaReno Concio5500/Pilone   | 396 398              | 0.47                               |
| 6 CassoniPasserellaReno Concio6500/Pilone   | 394 396              | 0.44                               |
| 7 CassoniPasserellaReno Concio7500/Pilone   | 393 395              | 0.45                               |
| 8 CassoniPasserellaReno Concio8500/Pilone   | 391 393              | 0.43                               |
| 9 CassoniPasserellaReno Concio9500/Pilone   | 389 391              | 0.41                               |
| 10 CassoniPasserellaReno Concio10500/Pilone | 387 389              | 0.40                               |
| 11 CassoniPasserellaReno Concio11500/Pilone | 385 387              | 0.39                               |
| 12 CassoniPasserellaReno Concio12500/Pilone | 383 385              | 0.38                               |
| 13 CassoniPasserellaReno Concio13500/Pilone | 381 383              | 0.38                               |
| 14 CassoniPasserellaReno Concio14500/Pilone | 379 381              | 0.38                               |
| 15 CassoniPasserellaReno Concio15500/Pilone | 377 379              | 0.37                               |
| 16 CassoniPasserellaReno Concio16500/Pilone | 329 377              | 0.37                               |
| 17 CassoniPasserellaReno Concio17500/Pilone | 252 329              | 0.37                               |
| 18 CassoniPasserellaReno Concio18500/Pilone | 94 230               | 0.35                               |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembr

Novembre 2023 Allegato 1- Pag. 76 di 87



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.4.4 Funi

Sforzo assiale massimo: Nsd = 366 kN

Fune FLC 32:

| Product code | d    | F <sub>u,k</sub> <sup>(1)</sup> | F <sub>R,d</sub> <sup>(2)</sup> | A     | EA   | Mass   |
|--------------|------|---------------------------------|---------------------------------|-------|------|--------|
| 0000         | (mm) | (kN)                            | (kN)                            | (mm²) | (MN) | (kg/m) |
| FLC 16       | 16   | 250                             | 152                             | 170   | 28.1 | 1.4    |
| FLC 20       | 20   | 395                             | 239                             | 266   | 43.9 | 2.2    |
| FLC 24       | 24   | 570                             | 345                             | 383   | 63.2 | 3.2    |
| FLC 28       | 28   | 775                             | 470                             | 521   | 86.0 | 4.3    |
| FLC 32       | 32   | 1015                            | 615                             | 681   | 112  | 5.7    |

Sforzo assiale resistente: Nrd = 615 kN > Nsd → verifica soddisfatta

#### 5.4.5 Corrimano

Spinta della folla sul corrimano: q = 1.50 kN/ml

Luce: L = 2.5m

Momento flettente: Msd =  $\gamma$  q L<sup>2</sup>/8 = 1.5 x 1.50 x 2.5 x 2.5 / 8 = 1.75 kNm

Profilo CHS 60.3x3.0

Acciaio S355, Classe 1, Z = 9859 mm3 Mrd = 3.33 kNm → verifica soddisfatta

#### 5.5 Verifica di resistenza soletta mista lamiera grecata -cls

Lamiera grecata tipo HEDAR SolMax HS 5580/6

Altezza 55mm, spessore 10/10mm

Cls C32/40 per spessore complessivo 110mm

Armatura all'estradosso: B450C - 1φ8/greca + rete elettrosaldata φ6 passo 100x100mm

Schema statico: trave continua su più campate di luce L = 2.5m

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 77 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.5.1 Verifica in presenza di folla (dalle tabelle del Produttore)

Carico utile: Folla 5.00 kN/m2 + Pavimentazione 0.70 kN/m2 = 5.70 kN/m2

### Lamiera grecata HS 5580/6 e Cls - H = 11 cm - Più campate

| Δ /        | Δ    | Δ     | Δ     |       | Portat | a utile | con car | ico uni | formen | nente d | istribu | ito p = | qmin - | pp [da | N/m <sup>2</sup> ] 6 | frecci | a massi | ma < | 1 / 500 |       |
|------------|------|-------|-------|-------|--------|---------|---------|---------|--------|---------|---------|---------|--------|--------|----------------------|--------|---------|------|---------|-------|
| sp. greca  | p.p. | Af    | Af    | I [m] |        |         |         |         |        |         |         |         |        |        |                      |        |         |      |         |       |
|            |      | φ[mm] | φ[mm] | 1,50  | 1,75   | 2,00    | 2,25    | 2,50    | ,75    | 3,00    | 3,25    | 3,50    | 3,75   | 4,00   | 4,25                 | 4,50   | 4,75    | 5,00 | 5,25    | 5,50  |
| HS 5580 06 | 200  | 0     | 8     | 4.098 | 2.958  | 2218    | 1.710   | 1.347   | 1.079  | 874     | 715     | 589     | 487    | 404    | 335                  | 277    | 228     | 187  | 151     | - 319 |
| HS 5580 07 | 202  | 0     | 10    | 4,724 | 3.417  | 2.569   | 1.988   | 1.572   | 1.264  | 1.030   | 848     | 703     | 587    | 491    | 412                  | 346    | 290     | 242  | 201     | 165   |
| HS 5580 08 | 203  | 0     | 10    | 5.333 | 3.864  | 2.911   | 2.258   | 1,790   | 1,444  | 1.181   | 976     | 814     | 683    | 576    | 487                  | 412    | 349     | 295  | 249     | 209   |
| HS 5580 10 | 205  | 0     | 12    | 6.508 | 4.727  | 3.571   | 2.77    | 2.212   | 792    | 1,473   | 1.225   | 1.028   | 869    | 739    | 631                  | 541    | 464     | 393  | 312     | 24    |
| HS 5580 12 | 207  | 0     | 12    | 7.634 | 5.553  | 4.203   | 3.278   | 2.615   | 2.125  | 1.753   | 1.463   | 1.233   | 1.047  | 895    | 769                  | 636    | 510     | 407  | 324     | 25    |

#### 5.5.2 Verifiche in presenza di folla (calcoli di massima)

#### Resistenze di progetto:

#### Mrd(+)

Dalle tabelle, per L = 2.5m, schema: trave appoggiata:

Qutile = 13.42 kN/m2  $\rightarrow$  Qtot = 13.42 + 2.07 = 15.49 kN/m2.

Mamm = Qtot  $L^2 / 8 = 12.10 \text{ kNm/m}$  posto  $\gamma = 1.35 \rightarrow \text{Mrd} = 16.3 \text{ kNm/m}$ 

Con 5 greche/0.8m  $\rightarrow$  Mrd = 2.61 kNm/greca

#### Mrd(-)

Considerando solo la sezione in c.a.:

Altezza utile d = 86mm

Af = 50mm2/greca

Mrd(-) = 0.9 d fyd Af = 0.9 x 86 mm x 391 N/mm2 x 50 mm2/greca = 1.51 kNm/greca

Vrd

Considerando solo la sezione in c.a.:

Vrd(cls) = 3.53 kN/greca

Considerando solo la lamiera in acciaio:

 $\lambda w = 55 / (86.4 \times 1 \times 1) = 0.637 < 0.83 / 1.2 = 0.692 \rightarrow \chi = \eta = 1.2$ 

Vrd(anima) =  $\chi$  fy h t /  $\chi$ M /  $\sqrt{3}$  = 8.5 kN/anima

Vrd(acciaio) = 17 kN/greca

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 78 di 87* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Sollecitazioni di progetto:

Schema statico: trave continua su 4 appoggi, Luce L = 2.5m

 $qsd = 1.35 \times (2.05 + 0.70 + 5.00) \text{ kN/m2} = 10.46 \text{ kN/m2} \rightarrow 1.67 \text{ kN/m/greca}$ 

Vsd = 0.6 qsd L = 2.51 kN/greca

 $\rightarrow$  ok

 $Msd(+) = 1/12.5 \text{ qsd } L^2 = 0.84 \text{ kNm/greca}$ 

 $\rightarrow$  ok

 $Msd(-) = 1/10 qsd L^2 = 1.05 kNm/greca$ 

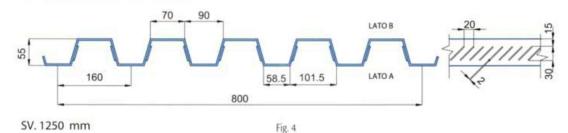
→ ok

#### 5.5.3 Verifiche in fase di getto

#### Carichi:

P.p. = 2.05 kN/m2

Mezzi d'opera: 1.00 kN/m2


Carico totale: Qk = 3.05 kN/m2

assumendo  $\gamma = 1.5 \rightarrow Qsd = 4.58 \text{ kN/m2}$ 

Caratteristiche statiche lamiera (sp. 10/10mm)

W = 24.4 cm 3/m J = 75.9 cm 4/m

#### LAMIERA GRECATA HS 5580/6



#### Tabella caratteristiche statiche ed efficaci della lamiera grecata HS 5580/6

|          | STATICHE      |            |            |                         | EFFICACI                |            |             |                         |                         |             |
|----------|---------------|------------|------------|-------------------------|-------------------------|------------|-------------|-------------------------|-------------------------|-------------|
| Spessore | P.p.<br>Kg/m² | A<br>cm²/m | J<br>cm4/m | W <sub>c</sub><br>cm³/m | W <sub>1</sub><br>cm³/m | A<br>cm²/m | Jf<br>cm4/m | W <sub>c</sub><br>cm³/m | W <sub>i</sub><br>cm³/m | l min<br>cm |
| 6/10     | 7,50          | 9,6        | 48,1       | 17,3                    | 17,6                    | 8,3        | 40,7        | 12,3                    | 16,4                    | 2,3         |
| 7/10     | 8,75          | 10,9       | 55,9       | 20,1                    | 20,5                    | 9,6        | 49,2        | 15,1                    | 19,3                    | 2,3         |
| 8/10     | 10,00         | 12,5       | 63,6       | 22,9                    | 23,4                    | 11,4       | 57,9        | 18,1                    | 22,2                    | 2,3         |
| 10/10    | 12,50         | 15,6       | 78,8       | 28,3                    | 29,0                    | 14,8       | 75,9        | 24,4                    | 28,1                    | 2,3         |
| 12/10    | 15,00         | 18,8       | 93,7       | 33,7                    | 34,5                    | 18,2       | 93,5        | 31,1                    | 34,0                    | 2,3         |

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 79 di 87* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Verifica di resistenza

 $Msd = 1/10 Qsd L^2 = 2.86 kNm/m$ 

 $Mrd = W fyd = (24.4 \times 1000) \times 235 / 1.05 = 5.46 kNm/m$ 

#### Verifica di deformabilità

Freccia f 
$$\cong$$
 2.74/384 Qk L<sup>4</sup> / E / J = 2.74/384 x 3.05 x 2500<sup>4</sup> / 210000 / (75.9 x 10000) = 5.2mm ( $\rightarrow$  L/f =479)

#### 5.5.4 Verifiche in presenza di mezzo a 4 ruote

Si assume la presenza esclusiva sull'impalcato di un mezzo a 4 ruote con passo longitudinale 2.5m e trasversale 1.3m, posto in asse ponte. Carico trasmesso da 1 ruota: 17 kN, impronta B = 200mm x 200mm.

Supponendo la presenza di pavimentazione con 20mm di spessore, la diffusione fino al piano medio della soletta (H = 110mm) risulta essere B' = 350mm x 350mm e quindi interessa in senso trasversale nr. 2.18 greche.

Nel caso di carico applicato in mezzeria campata, l'effetto lastra permette di considerare una larghezza trasversale di soletta coinvolta pari a Beff = B' + 2 L / 4 = 350 + 2 x 2500 / 4 = 1600mm equivalente a nr. 10 greche. Siccome il passo trasversale assunto è di 1300mm (< 1600mm) si considera Beff = 1300mm equivalente a nr. 8.125 greche.

Vengono considerati 2 casi:

- 1) Ruote a metà campata;
- 2) Ruote in prossimità dell'appoggio.

Contributo dei carichi permanenti concomitanti:

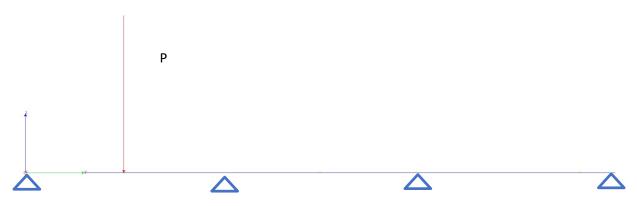
 $Vsd(Gk) = 0.6 \ \gamma \ Gk \ L \ passo\_greche = 0.6 \ x \ 1.35 \ x \ (2.05 + 0.70) \ kN/m2 \ x \ 2.5 \ m \ x \ 0.16m = 0.89 \ kN/greca$   $Msd(+)(Gk) = -1/12.5 \ \gamma \ Gk \ L^2 \ passo\_greche = 1/12.5 \ x \ 1.35 \ x \ (2.05 + 0.70) \ kN/m2 \ x \ 2.5^2 \ m^2 \ x \ 0.16m = 0.30 \ kNm/greca$   $= 0.30 \ kNm/greca$   $Msd(-)(Gk) = -1/10 \ \gamma \ Gk \ L^2 \ passo\_greche = -1/10 \ x \ 1.35 \ x \ (2.05 + 0.70) \ kN/m2 \ x \ 2.5^2 \ m^2 \ x \ 0.16m = 0.37 \ kNm/greca$ 

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

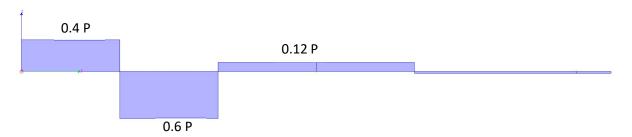
 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

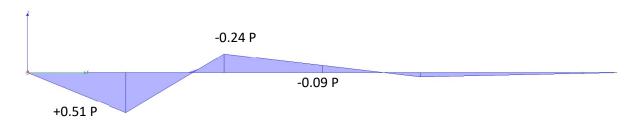
 Allegato 1- Pag. 80 di 87




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Caso 1) Ruote a metà campata


#### Contributo delle ruote:



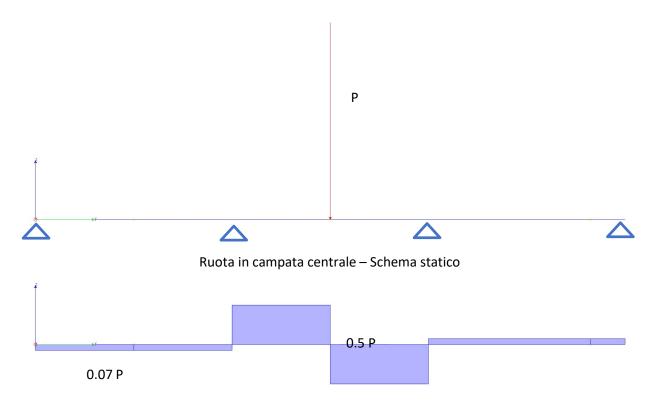
Ruota in campata sinistra – Schema statico



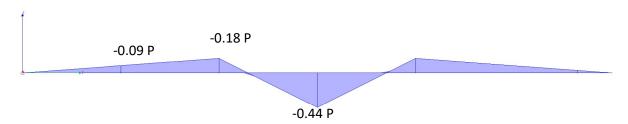
Ruota in campata sinistra – Diagramma Taglio



Ruota in campata sinistra – Diagramma Momento flettente


**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


Data:Novembre 2023Allegato 1- Pag. 81 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Ruota in campata centrale – Diagramma Taglio



Ruota in campata centrale – Diagramma Momento flettente

Sollecitazioni massime in presenza di una o due ruote:

$$Mmax(+) = +0.51 P$$

$$Mmax(-) = -0.24 P - 0.18 P = -0.42 P$$

#### Sollecitazioni totali

 $Vsd\_tot = 0.89 \text{ kN/greca} + 0.67 \times 17 \text{ kN / } 8.125 \text{ greche} = 2.14 \text{ kN/greca} < Vrd(cls) \rightarrow OK$   $Msd(+)\_tot = 0.30 \text{ kNm/greca} + 0.51 \times 17 \text{ kN / } 8.125 \text{ greche} = +1.36 \text{ kNm/greca} < Mrd(+) \rightarrow OK$   $Msd(-)\_tot = -0.37 \text{ kNm/greca} - 0.42 \times 17 \text{ kN / } 8.125 \text{ greche} = -1.25 \text{ kNm/greca} < Mrd(-) \rightarrow OK$ 

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data:Novembre 2023Allegato 1- Pag. 82 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Caso 2) Ruota in prossimità dell'appoggio



Ruota in a x = 0.44m dall'appoggio (→ impronta B' esterna all'ala profilo) – Schema statico



Ruota in a x = 0.44m dall'appoggio – Diagramma Taglio

Nr. greche: 2.18 greche

Vsd\_tot = 0.89 kN/greca + 0.89 x 17 kN / 2.18 greche = 7.83 kN/greca < Vrd(lamiera) → OK

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice:

REL\_6\_4

Data: Novembre 2023

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 6 Stima delle quantità

Si riporta il peso teorico ricavato dal modello matematico considerando la sezione costante a tratti (se variabile lungo l'elemento strutturale) per le lunghezze da nodo a nodo corrispondenti.

Non sono compresi i pesi di piatti di nodo e di irrigidimento, saldature, bullonature, dettagli:

Per tenere conto di quanto escluso il peso teorico cosí ricavato viene incrementato del 20%.

#### **6.1** Trave reticolare spaziale

| Sezione | Tipo                   | Commento                       | Peso<br>Unitario<br>[kN/m] | Lunghezza<br>Tot.<br>[m] | Area Bagnata<br>Tot.<br>[m²] | Peso<br>Tot.<br>[kN] |
|---------|------------------------|--------------------------------|----------------------------|--------------------------|------------------------------|----------------------|
| 101     | CHS_EN10219 244.5X12.0 | Corrente Long Inf              | 0.69                       | 77.559                   | 59.6                         | 53                   |
| 111     | CHS_EN10219 244.5X12.5 | Corrente Long Inf rinf         | 0.72                       | 2.5                      | 1.9                          | 2                    |
| 201     | CHS_EN10219 114.3X5.0  | Diagonali di Parete            | 0.13                       | 237.609                  | 85.3                         | 32                   |
| 301     | CHS_EN10219 177.8X8.0  | Corrente Long Sup              | 0.34                       | 100                      | 55.9                         | 34                   |
| 311     | CHS_EN10219 177.8X12.0 | Corrente Long Sup Rinf         | 0.49                       | 60.119                   | 33.6                         | 29                   |
| 401     | CHS_EN10219 114.3X5.0  | Traversi Sup                   | 0.13                       | 45.004                   | 16.2                         | 6                    |
| 501     | CHS_EN10219 114.3X6.0  | Diagonali Orizzontali Reticola | 0.16                       | 93.348                   | 33.5                         | 15                   |
| 601     | CHS_EN10219 177.8X8.0  | Aste Aggancio Impalcato        | 0.34                       | 156.372                  | 87.3                         | 52                   |
| 701     | CHS_EN10219 177.8X8.0  | Ritegno trasversale            | 0.34                       | 3.176                    | 1.8                          | 1                    |
| 103     | CHS_EN10219 177.8X8.0  | Appoggi centrali               | 0.34                       | 3.303                    | 1.8                          | 1                    |
|         |                        |                                | тот                        | 778.991                  | 376.9                        | 226                  |

Peso teorico: 226 kN

Peso presunto reale: 226 kN + 20% = 271.2 kN

6.2 Impalcato, montanti e corrimano

Peso teorico: 62 kN

Peso presunto reale: 62 kN + 20% = 74.4 kN

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato 1- Pag. 84 di 87

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 6.3 Pennoni

| Sezione | Tipo                              | Peso<br>Unitario | Sup.<br>Bagnata<br>Unitaria | Lunghezza<br>Tot. | Area Bagnata<br>Tot. | Peso<br>Tot. |
|---------|-----------------------------------|------------------|-----------------------------|-------------------|----------------------|--------------|
|         |                                   | [kN/m]           | [m²]                        | [m]               | [m²]                 | [kN]         |
| 1       | CassoniPasserellaReno Concio750   | 0.86             | 1.5                         | 3                 | 4.5                  | 3            |
| 2       | CassoniPasserellaReno Concio2250  | 1.24             | 2.1                         | 3                 | 6.3                  | 4            |
| 3       | CassoniPasserellaReno Concio3500  | 1.84             | 2.8                         | 1.996             | 5.5                  | 4            |
| 4       | CassoniPasserellaReno Concio4500  | 2.1              | 3.2                         | 1.996             | 6.3                  | 4            |
| 5       | CassoniPasserellaReno Concio5500  | 2.35             | 3.6                         | 1.996             | 7.1                  | 5            |
| 6       | CassoniPasserellaReno Concio6500  | 2.61             | 4                           | 1.996             | 7.9                  | 5            |
| 7       | CassoniPasserellaReno Concio7500  | 2.87             | 4.4                         | 1.996             | 8.8                  | 6            |
| 8       | CassoniPasserellaReno Concio8500  | 3.13             | 4.8                         | 1.996             | 9.6                  | 6            |
| 9       | CassoniPasserellaReno Concio9500  | 3.38             | 5.2                         | 1.996             | 10.4                 | 7            |
| 10      | CassoniPasserellaReno Concio10500 | 3.64             | 5.6                         | 1.996             | 11.2                 | 7            |
| 11      | CassoniPasserellaReno Concio11500 | 3.9              | 6                           | 1.996             | 12                   | 8            |
| 12      | CassoniPasserellaReno Concio12500 | 4.15             | 6.4                         | 1.996             | 12.8                 | 8            |
| 13      | CassoniPasserellaReno Concio13500 | 4.41             | 6.8                         | 1.996             | 13.7                 | 9            |
| 14      | CassoniPasserellaReno Concio14500 | 4.67             | 7.3                         | 1.996             | 14.5                 | 9            |
| 15      | CassoniPasserellaReno Concio15500 | 4.92             | 7.7                         | 1.996             | 15.3                 | 10           |
| 16      | CassoniPasserellaReno Concio16500 | 5.18             | 8.1                         | 1.996             | 16.1                 | 10           |
| 17      | CassoniPasserellaReno Concio17500 | 5.44             | 8.5                         | 1.996             | 16.9                 | 11           |
| 18      | CassoniPasserellaReno Concio18500 | 5.69             | 8.9                         | 1.996             | 17.7                 | 11           |
|         |                                   |                  |                             | 37.943            | 196.8                | 127          |

Peso teorico: 127 kN (esclusa base di collegamento tra i pennoni)

Stima irrigidimenti interni: 21 kN

Peso presunto reale: si incrementa del 20% il peso totale ottenuto per tenere conto della base di collegamento tra i pennoni

 $(127 \text{ kN} + 21 \text{ kN}) \times 1.20 = 152.6 \text{ kN}$ 

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 85 di 87* 



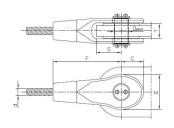
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

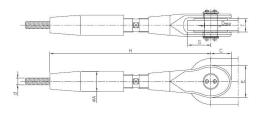
#### 6.4 Funi e capicorda

#### Funi FLC 32 Redaelli (o equivalenti)

| N.   | Luce   | Peso<br>unitario | Luce totale | Peso Totale |
|------|--------|------------------|-------------|-------------|
| Aste | [m]    | [kN/m]           | [m]         | [kN]        |
| 4    | 29.815 | 0.057            | 119.262     | 6.8         |
| 4    | 25.462 | 0.057            | 101.848     | 5.8         |
| 4    | 21.433 | 0.057            | 85.732      | 4.9         |
| 12   |        | 0                | 306.842     | 17.5        |


#### Capicorda:

Tipologie: Redaelli (o equivalenti)


estremità superiore: capocorda a forcella TTF 28, peso unitario 0.12 kN, nr. 12;

estremità inferiore: capocorda a forcella regolabile TBF, peso unitario 0.24 kN, nr. 12.









#### 6.5 Solaio misto lamiera grecata e cls collaborante

Area totale: 293.5 m2

Lamiera grecata tipo HEDAR SolMax HS 5580/6

Altezza 55mm, spessore 10/10mm, peso 0.125 kN/m2

Peso totale = 36.7 kN

Cls C32/40 per spessore complessivo 110mm

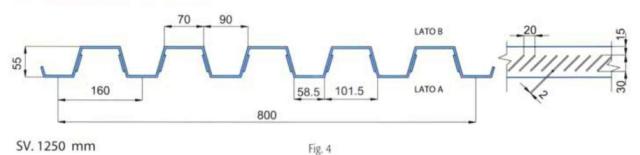
Volume cls:  $0.08 \text{ m}3/\text{m}2 \rightarrow \text{Volume totale} = 23.6 \text{ m}3$ 

Armatura all'estradosso: B450C - 1φ8/greca + rete elettrosaldata φ6 passo 100x100mm

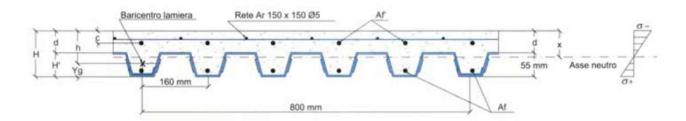
Incidenza: 0.95 kN/m2  $\rightarrow 2.79 \text{ kN}$ 

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


**Data:** Novembre 2023 *Allegato 1- Pag. 86 di 87* 




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## LAMIERA GRECATA HS 5580/6



# LAMIERA GRECATA HS 5580/6 E CLS - H = 11 CM



**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 1- Pag. 87 di 87* 

# Passerella ciclopedonale fiume Reno – Sasso Marconi

# **Progetto Definitivo**

# Relazione tecnica delle strutture metalliche ALLEGATO 2

STR\_REL\_6\_4



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## **Sommario**

| 1     | Premessa                                             | 3    |
|-------|------------------------------------------------------|------|
| 2     | Descrizione del modello matematico                   | 3    |
| 2.1   | Premessa                                             | 3    |
| 2.2   | Viste e numerazioni                                  | 4    |
| 2.3   | Materiali e sezioni                                  | 4    |
| 2.3.1 | Materiali                                            | 4    |
| 2.3.2 | Sezioni                                              | 5    |
| 2.4   | Carichi e azioni                                     | 6    |
| 2.5   | Condizioni e combinazioni di carico                  | 6    |
| 3     | Principali risultati dell'analisi frequenziale       | 8    |
| 4     | Principali risultati dell'analisi statica e dinamica | 9    |
| 4.1   | Deformate e spostamenti                              | 9    |
| 4.2   | Sollecitazioni                                       | . 12 |
| 4.3   | Scarichi in fondazione                               | . 17 |
| 4.3.1 | Reazione globale                                     | . 17 |
| 5     | Verifiche                                            | . 19 |
| 5.1   | Verifiche di deformabilità                           | . 19 |
| 5.2   | Verifiche di comfort vibrazionale dei pedoni         | . 19 |
| 5.3   | Verifica di resistenza delle membrature in acciaio   | . 21 |
| 5.3.1 | Ritti in c.a                                         | . 23 |
| 5.4   | Verifica di resistenza solaio                        | . 28 |
| 5.4.1 | Verifiche traliccio lastra in fase di getto          | . 29 |



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 1 Premessa

Il presente documento costituisce un Allegato della Relazione Tecnica delle strutture della Passerella ciclopedonale sul fiume Reno e contiene i principali risultati dell'analisi statica e dinamica condotta sui modelli matematici dei moduli delle rampe di accesso.

Per le fondazioni vedere la "Relazione di calcolo delle opere in cemento armato e relative fondazioni".

#### 2 Descrizione del modello matematico

#### 2.1 Premessa

Sono stati implementati i modelli matematici che considerano il telaio in c.a. avente altezza di 7m e 3m rispettivamente, con larghezza 3m. Su essi si appoggiano gli impalcati di luce 5m (modelli: "Rampa cat. B, Classe II, folla massa nulla.dt").

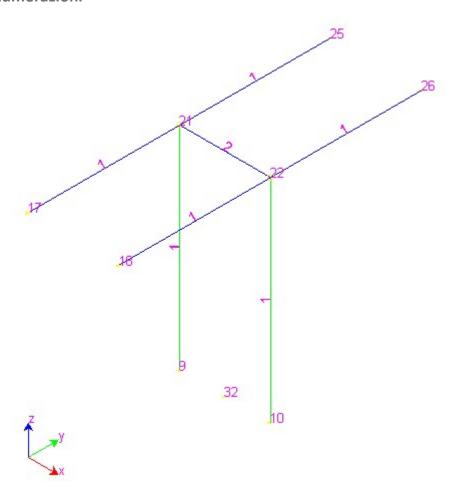
I ritti ed il traverso in c.a. hanno sezione 50cm x 50cm e 35cm x 35cm rispettivamente, i profili longitudinali perimetrali dell'impalcato sono in acciaio S235 del tipo HEA220, l'impalcato è costituito da un solaio Predalle di altezza complessiva 30cm e ordito in senso trasversale.

I ritti sono considerati incastrati alla base.

In senso orizzontale sia longitudinale che trasversale ogni telaio è soggetto all'influenza di un campo 3m x 5m di impalcato.

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4


 Data:
 Novembre 2023

 Allegato 2 - pag. 3 di 30

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 2.2 Viste e numerazioni



Assonometria con numerazione nodale e sezioni

#### 2.3 Materiali e sezioni

#### 2.3.1 Materiali

| Materiale | Info    | E      | v    | α        | Peso<br>Specifico |
|-----------|---------|--------|------|----------|-------------------|
| Numero    |         | [MPa]  |      | 1/[1/ºC] | [kN/m3]           |
| 1         | Cls     | 30000  | 0.33 | 0.000012 | 25.0              |
| 2         | Acciaio | 210000 | 0.33 | 0.00001  | 78.5              |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 4 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 2.3.2 Sezioni

#### Ritti- Elementi tipo "beam"

| Sezione<br>nr. | Materiale |             |                          |
|----------------|-----------|-------------|--------------------------|
| 1              | 1         | B= 50 H= 50 | Rett. Ritto portale H=7m |
| 1              | 1         | B= 50 H= 50 | Rett. Ritto portale H=3m |

| Sariana | Area    | J3                 | J2                 | J23                | Jt                 | V., | V., |
|---------|---------|--------------------|--------------------|--------------------|--------------------|-----|-----|
| Sezione | [cm²]   | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | Хx  | Ху  |
| 1       | 2500.00 | 520833             | 520833             | 0                  | 878599             | 1.2 | 1.2 |
| 1       | 1225.00 | 125052             | 125052             | -0                 | 210952             | 1.2 | 1.2 |

#### Travi – Elementi tipo "beam"

| Sezione<br>nr. | Materiale |             |                              |
|----------------|-----------|-------------|------------------------------|
| 1              | 2         |             | HEA 220 Impalcato(D.B.)      |
| 2              | 1         | B= 50 H= 50 | Rett. Traverso portale H=7m  |
| 2              | 1         | B= 35 H= 35 | Rett. Traverso portale H= 3m |

| Cariana | Area    | J3                 | J2                 | J23                | Jt                 | ٧   | ٧   |
|---------|---------|--------------------|--------------------|--------------------|--------------------|-----|-----|
| Sezione | [cm²]   | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | Хх  | Ху  |
| 1       | 64.46   | 5419               | 1955               | 0                  | 28                 | 4.1 | 1.4 |
| 2       | 2500.00 | 520833             | 520833             | 0                  | 878599             | 1.2 | 1.2 |
|         | 1225.00 | 125052             | 125052             | -0                 | 210952             | 1.2 | 1.2 |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 5 di 30* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 2.4 Carichi e azioni

Per i dettagli delle azioni di progetto vedere la Relazione Tecnica.

#### Aree di carico:

| Area   | A <sub>x</sub> A <sub>y</sub> A <sub>z</sub> Area Carichi unitari per condizione |      |      |      |      |       | Carichi Totali |                |         |             |      |      |      |
|--------|----------------------------------------------------------------------------------|------|------|------|------|-------|----------------|----------------|---------|-------------|------|------|------|
| Numero | Commento                                                                         | [m²] | [m²] | [m²] | [m²] | Cand  | qx             | q <sub>y</sub> | qz      | Applicato   | Qx   | Qy   | Qz   |
|        |                                                                                  |      |      |      |      | Cond. | [kN/m2]        | [kN/m2]        | [kN/m2] | Riferimento | [kN] | [kN] | [kN] |
| 1      | Area 1                                                                           | 0    | 0    | 30.0 | 30.0 | 2     | 0              | 0              | 0.70    | Global      | 0    | 0    | 21   |
|        |                                                                                  |      |      |      |      | 3     | 0              | 0              | 5.40    | Global      | 0    | 0    | 162  |
|        |                                                                                  |      |      |      |      | 4     | 0              | 0              | 5.00    | Global      | 0    | 0    | 150  |

#### 2.5 Condizioni e combinazioni di carico

#### Condizioni di carico:

| Condizione |                 |
|------------|-----------------|
| 1          | P.p. x 1.15     |
| 2          | Pavimentazione  |
| 3          | Solaio          |
| 4          | Folla           |
| 5          | Parapetto       |
| 6          | Sisma Trasv.SLU |
| 7          | Sisma Long.SLU  |

#### Combinazioni di carico SLU

|     |              | 1           | 2              | 3      | 4     | 5         |
|-----|--------------|-------------|----------------|--------|-------|-----------|
| Nr. | SLU          | P.p. x 1.15 | Pavimentazione | Solaio | Folla | Parapetto |
| 1   | Permanenti   | 1.35        | 1.35           | 1.35   | 0.00  | 1.35      |
| 2   | Folla totale | 1.35        | 1.35           | 1.35   | 1.35  | 1.35      |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Combinazioni di carico SLV

|     |                 | 1           | 2              | 3      | 4     | 5         | 6               | 7              |
|-----|-----------------|-------------|----------------|--------|-------|-----------|-----------------|----------------|
| Nr. | SLV             | P.p. x 1.15 | Pavimentazione | Solaio | Folla | Parapetto | Sisma Trasv.SLU | Sisma Long.SLU |
| 1   | SLV             | 1           | 1              | 1      | 0     | 1         | 0               | 0              |
| 2   | SLV Earthq.+X+Y | 1           | 1              | 1      | 0     | 1         | 1               | 0.3            |
| 3   | SLV Earthq.+X-Y | 1           | 1              | 1      | 0     | 1         | 1               | -0.3           |
| 4   | SLV EarthqX+Y   | 1           | 1              | 1      | 0     | 1         | -1              | 0.3            |
| 5   | SLV EarthqX-Y   | 1           | 1              | 1      | 0     | 1         | -1              | -0.3           |
| 6   | SLV Earthq.+Y+X | 1           | 1              | 1      | 0     | 1         | 0.3             | 1              |
| 7   | SLV Earthq.+Y-X | 1           | 1              | 1      | 0     | 1         | -0.3            | 1              |
| 8   | SLV EarthqY+X   | 1           | 1              | 1      | 0     | 1         | 0.3             | -1             |
| 9   | SLV EarthqY-X   | 1           | 1              | 1      | 0     | 1         | -0.3            | -1             |

#### Combinazioni di carico SLE

|     |              | 1           | 2              | 3      | 4     | 5         |
|-----|--------------|-------------|----------------|--------|-------|-----------|
| Nr. | SLE          | P.p. x 1.15 | Pavimentazione | Solaio | Folla | Parapetto |
| 1   | Permanenti   | 1           | 1              | 1      | 0     | 1         |
| 2   | Folla totale | 1           | 1              | 1      | 1     | 1         |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 7 di 30* 



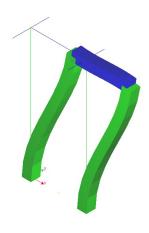
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

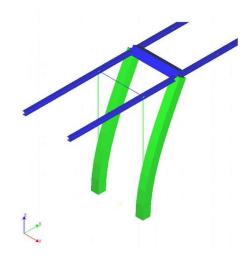
## 3 Principali risultati dell'analisi frequenziale

L'analisi frequenziale è stata condotta su entrambi i modelli analizzati.

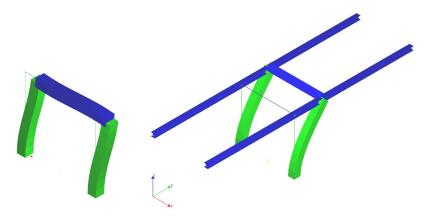
#### Legenda


R ordinata dello spettro

Coeff.di Part. coefficienti di partecipazione (in letteratura gij)


 $|L_i|/|L_1|$  rapporto percentuale fra i fattori di partecipazione del modo i-esimo e del primo modo

Mmi/Mmtot percentuale massa modale efficacie dell'i-esimo modo Sum Mmi/Mmtot percentuale cumulativa delle masse modali efficaci


Analisi spettrale via vettori di Ritz Smorzamento strutturale 5.0%risposta  $S = CQC(S_i)$ 



Modo traslazionale dir. X - T = 0.28 sec



Modo traslazionale dir. Y - T = 0.49 sec

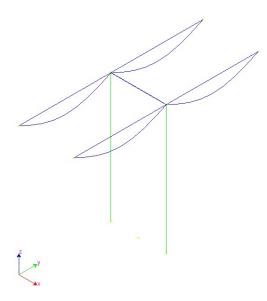


Modo traslazionale dir. X - T = 0.16 sec

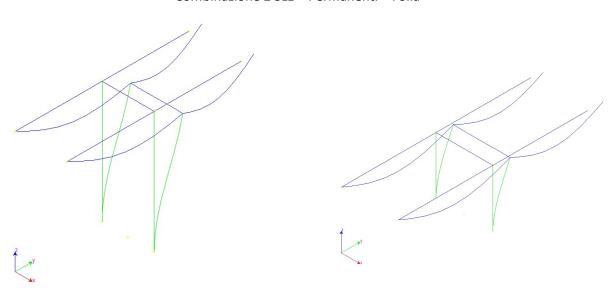
Modo traslazionale dir. Y - T = 0.26 sec

Documento: PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


**Data:** Novembre 2023 Allegato 2 - pag. 8 di 30

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4 Principali risultati dell'analisi statica e dinamica

# 4.1 Deformate e spostamenti

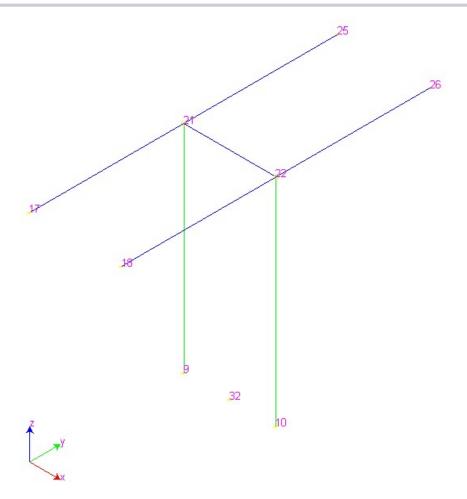


Combinazione 2 SLE - Permanenti + Folla



Piloni, stralli e correnti superiori - Combinazione 6 SLV - SLV Earthq.+Y+X

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 9 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Nodi con spostamenti monitorati

Nodo n. 22 (telaio H = 7m)

#### Combinazioni SLU

| Comb. | Ux   | Uy   | Uz   | Rx    | Ry       | Rz    |
|-------|------|------|------|-------|----------|-------|
|       | [cm] | [cm] | [cm] | [deg] | [deg]    | [deg] |
| 1     | 0    | 0    | 0    | 0     | -0.00188 | 0     |
| 2     | 0    | 0    | 0    | 0     | -0.00188 | 0     |

#### Combinazioni SLV

| Comb. | Ux   | Uy   | Uz   | Rx<br>[deg] | Ry       | Rz    |
|-------|------|------|------|-------------|----------|-------|
|       | [cm] | [cm] | [cm] | [aeg]       | [aeg]    | [aeg] |
| 3     | 0    | 0    | 0    | 0           | -0.0014  | 0     |
| 4     | 0.9  | 0.7  | 0    | -0.08984    | 0.02695  | 0     |
| 5     | 0.9  | -0.7 | 0    | 0.08984     | 0.02695  | 0     |
| 6     | -0.9 | 0.7  | 0    | -0.08984    | -0.02974 | 0     |
| 7     | -0.9 | -0.7 | 0    | 0.08984     | -0.02974 | 0     |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 10 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 8  | 0.3  | 2.4  | 0 | -0.29948 0.00711 0 |
|----|------|------|---|--------------------|
| 9  | -0.3 | 2.4  | 0 | -0.29948 -0.0099 0 |
| 10 | 0.3  | -2.4 | 0 | 0.29948 0.00711 0  |
| 11 | -0.3 | -2.4 | 0 | 0.29948 -0.0099 0  |

#### Combinazioni SLE

| Comb  | Ux   | Uy   | Uz   | Rx    | Ry      | Rz    |
|-------|------|------|------|-------|---------|-------|
| Comb. | [cm] | [cm] | [cm] | [deg] | [deg]   | [deg] |
| 12    | 0    | 0    | 0    | 0     | -0.0014 | 0     |
| 13    | 0    | 0    | 0    | 0     | -0.0014 | 0     |

Nodo n. 22 (telaio H = 3m)

#### Combinazioni SLU

| Comb. | Ux   | Uy   | Uz   | Rx      | Ry       | Rz      |
|-------|------|------|------|---------|----------|---------|
|       | [cm] | [cm] | [cm] | [deg]   | [deg]    | [deg]   |
|       | -0.0 | 0.0  | -0.0 | 0.00000 | -0.00493 | 0.00000 |
| 2     | -0.0 | 0.0  | -0.0 | 0.00000 | -0.00493 | 0.00000 |

#### Combinazioni SLV

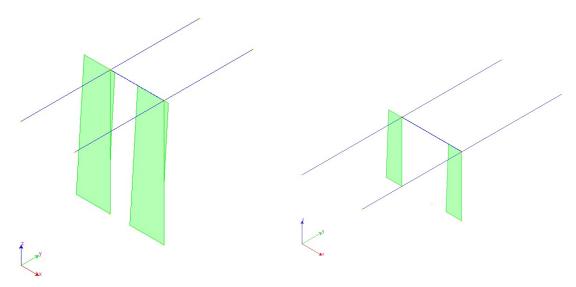
| Comb. | Ux<br>[cm] | Uy<br>[cm] | Uz<br>[cm] | Rx<br>[deg] | Ry<br>[deg] | Rz<br>[deg] |  |
|-------|------------|------------|------------|-------------|-------------|-------------|--|
|       | -0.0       | 0.0        | -0.0       | 0.00000     | -0.00365    | 0.00000     |  |
| 4     | 0.3        | 0.2        | -0.0       | -0.06977    | 0.03136     | 0.00000     |  |
| 5     | 0.3        | -0.2       | -0.0       | 0.06977     | 0.03136     | -0.00000    |  |
| 6     | -0.3       | 0.2        | -0.0       | -0.06977    | -0.03866    | 0.00000     |  |
| 7     | -0.3       | -0.2       | -0.0       | 0.06977     | -0.03866    | -0.00000    |  |
| 8     | 0.1        | 8.0        | -0.0       | -0.23256    | 0.00685     | 0.00000     |  |
| 9     | -0.1       | 8.0        | -0.0       | -0.23256    | -0.01416    | 0.00000     |  |
| 10    | 0.1        | -0.8       | -0.0       | 0.23256     | 0.00685     | -0.00000    |  |
| 11    | -0.1       | -0.8       | -0.0       | 0.23256     | -0.01416    | -0.00000    |  |

# Combinazioni SLE

|         | Comb | Ux   | Uy   | Uz   | Rx      | Ry          | Rz      |
|---------|------|------|------|------|---------|-------------|---------|
| COIIID. |      | [cm] | [cm] | [cm] | [deg]   | Ry<br>[deg] | [deg]   |
|         | 12   | -0.0 | 0.0  | -0.0 | 0.00000 | -0.00365    | 0.00000 |
|         | 13   | -0.0 | 0.0  | -0.0 | 0.00000 | -0.00365    | 0.00000 |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


**Data:** Novembre 2023 *Allegato 2 - pag. 11 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 4.2 Sollecitazioni



Sforzo assiale – Invliluppo Comb.

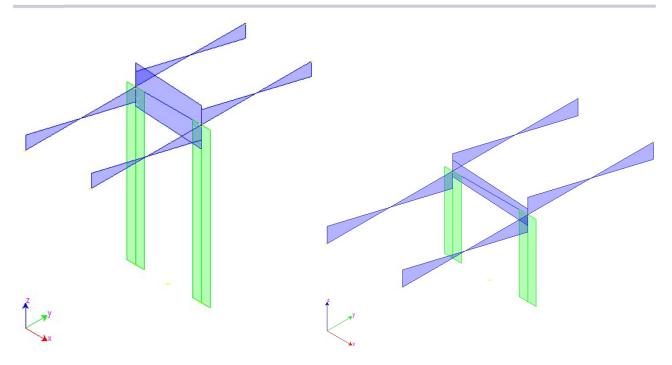
H=7m

| Sez             | Max<br>[kN] | Min<br>[kN] |
|-----------------|-------------|-------------|
| 1 Pilastri 9 21 | (2) 1929 21 | (4) -25     |

H=3m

| Sez                                     | Max<br>[kN] | Min<br>[kN] |  |
|-----------------------------------------|-------------|-------------|--|
| 1 Pilastri 9 21 (2)                     | 1500 21     | (4)         |  |
| 1 1111111111111111111111111111111111111 | 1209/1      | (4)         |  |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 12 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Taglio 1-2 – Invliluppo Comb.

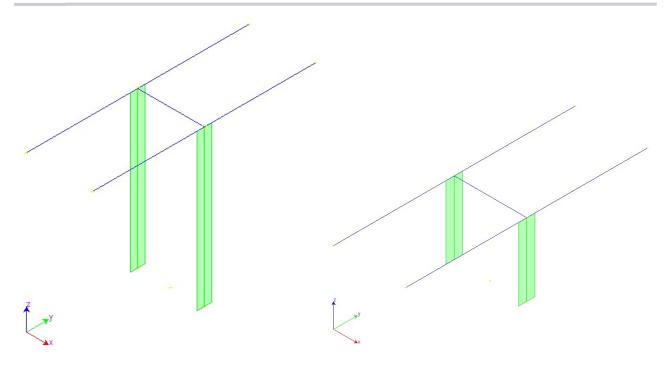
H = 7m

| Sez | :        |    |    |     | Max<br>[kN] |           | Min<br>[kN] |
|-----|----------|----|----|-----|-------------|-----------|-------------|
| 1   | Pilastri | 10 | 22 | (4) | 40          | 9 21 (7)  | -40         |
| 1   | Travi    | 17 | 21 | (2) | 60          | 17 21 (2) | -60         |
| 2   | Travi    | 21 | 22 | (7) | 95          | 21 22 (4) | -95         |

H = 3m

| Sez |                    | kN]      | [kN]      |
|-----|--------------------|----------|-----------|
| 1   | Pilastri 10 22 (4) | 35 9 21  | . (7) -35 |
| 1   | Travi 17 21 (2)    | 60 17 21 | (2) -60   |
| 2   | Travi 21 22 (7)    | 38 21 22 | 2 (4) -38 |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 13 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Taglio 1-3 – Invliluppo Comb.

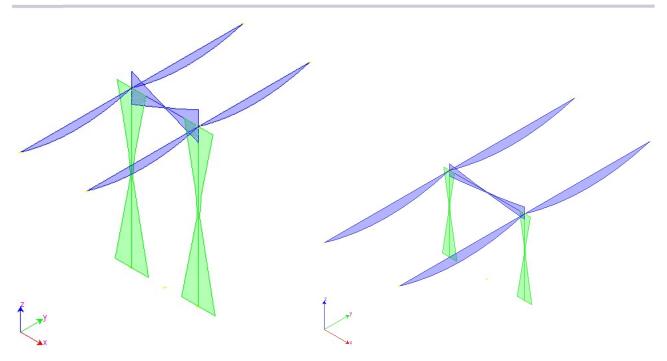
H = 7m

| c   | _                | Max  |      | Min  |      |  |
|-----|------------------|------|------|------|------|--|
| Sez | 4                | [kN] |      |      | [kN] |  |
| 1   | Pilastri 9 21 (8 | 33   | 9 21 | (10) | -33  |  |

H=3m

| Sez                 | Max<br>kN] |      | Min<br>[kN] |
|---------------------|------------|------|-------------|
| 1 Pilastri 9 21 (8) | 349 21     | (10) | -34         |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 14 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Momento flettente 1-2 – Inviluppo Comb.

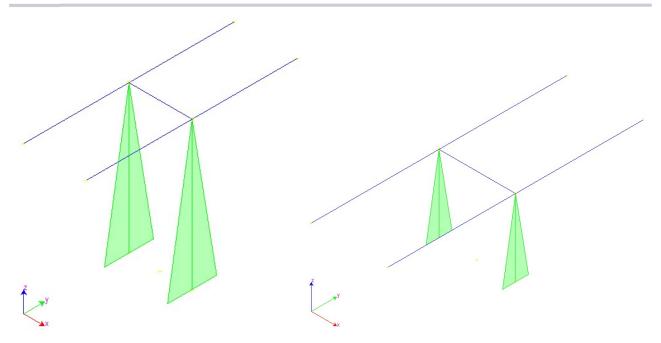
H = 7m

| Sez | 1                  | Max<br>[kN] | Min<br>[kN] |
|-----|--------------------|-------------|-------------|
| 1   | Travi 17 21 (13    | ) 0 172     | 1 (2) -75   |
| 2   | Travi 21 22 (7)    | 131 21 2    | 2 (4) -126  |
| 1   | Pilastri 10 22 (4) | 152 9 2     | l (7) -152  |

H = 3m

| Sez |                    | мах<br>[kNm] | Min<br>[kNm] |
|-----|--------------------|--------------|--------------|
| 1   | Travi 17 21 (13)   | 0 17 21 (    | 2) -75       |
| 2   | Travi 21 22 (7)    | 46 21 22 (   | 4) -40       |
| 1 F | Pilastri 10 22 (4) | 60 9 21 (    | 7) -60       |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 15 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Momento flettente 1-3 – Inviluppo Comb.

H=7m

| Sez |              |        | Max  |         | Min  |
|-----|--------------|--------|------|---------|------|
|     |              |        | [kN] |         | [kN] |
|     | 1 Pilastri 9 | 21 (8) | 2339 | 21 (10) | -233 |

H=3m

| Sez                 | Max<br>[kNm] |      | Min<br>[kNm] |  |
|---------------------|--------------|------|--------------|--|
| 1 Pilastri 9 21 (8) | 102921       | (10) | -102         |  |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 16 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 4.3 Scarichi in fondazione

# 4.3.1 Reazione globale

H=7m

#### Combinazioni SLU

| Cambinasiana | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
|              |      |      |      | 0     |       |       |
| 2            | 0    | 0    | 383  | 0     | 0     | 0     |

#### Combinazioni SLV

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 3            | 0    | 0    | 209  | 0     | 0     | 0     |
| 4            | -80  | -20  | 209  | 140   | -559  | 0     |
| 5            | -80  | 20   | 209  | -140  | -559  | 0     |
| 6            | 80   | -20  | 209  | 140   | 559   | 0     |
| 7            | 80   | 20   | 209  | -140  | 559   | 0     |
| 8            | -24  | -67  | 209  | 467   | -168  | 0     |
| 9            | 24   | -67  | 209  | 467   | 168   | 0     |
| 10           | -24  | 67   | 209  | -467  | -168  | 0     |
| 11           | 24   | 67   | 209  | -467  | 168   | 0     |

#### Combinazioni SLE

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 12           | 0    | 0    | 209  | 0     | 0     | 0     |
| 13           | 0    | 0    | 284  | 0     | 0     | 0     |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 17 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### H=3m

#### Combinazioni SLU

| C            | Rx               | Ry | Rz   | Mx    | My    | Mz    |
|--------------|------------------|----|------|-------|-------|-------|
| Combinazione | inazione<br>[kN] |    | [kN] | [kNm] | [kNm] | [kNm] |
| 1            | 0                | 0  | 215  | 0     | -0    | 0     |
| 2            | 0                | 0  | 316  | 0     | -0    | 0     |

#### Combinazioni SLV

| Combinazione | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 3            | 0    | 0    | 159  | 0     | 0     | 0     |
| 4            | -68  | -20  | 159  | 61    | -204  | 0     |
| 5            | -68  | 20   | 159  | -61   | -204  | 0     |
| 6            | 68   | -20  | 159  | 61    | 204   | 0     |
| 7            | 68   | 20   | 159  | -61   | 204   | 0     |
| 8            | -20  | -68  | 159  | 203   | -61   | -0    |
| 9            | 20   | -68  | 159  | 203   | 61    | 0     |
| 10           | -20  | 68   | 159  | -203  | -61   | 0     |
| 11           | 20   | 68   | 159  | -203  | 61    | ٥     |

# Combinazioni SLE

| Combinations | Rx   | Ry   | Rz   | Mx    | My    | Mz    |
|--------------|------|------|------|-------|-------|-------|
| Combinazione | [kN] | [kN] | [kN] | [kNm] | [kNm] | [kNm] |
| 12           | 0    | 0    | 159  | 0     | 0     | 0     |
| 13           | 0    | 0    | 234  | 0     | 0     | 0     |

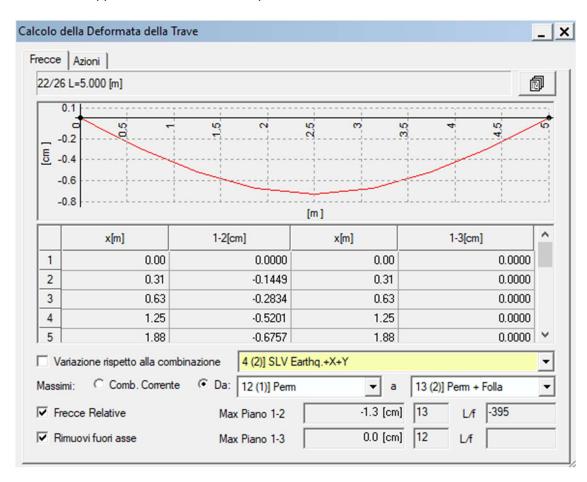
**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembr

 Data:
 Novembre 2023

 Allegato 2 - pag. 18 di 30


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5 Verifiche

#### 5.1 Verifiche di deformabilità

Calcolo del rapporto Luce/freccia su campata L = 5m:



Rapporto Luce/freccia = 395 (Nota: valore sottostimato in quanto ottenuto considerando solo la rigidezza flessionale del profilo metallico e trascurando la connessione con il cordolo superiore in c.a.)

# 5.2 Verifiche di comfort vibrazionale dei pedoni

Con riferimento al documento "Hivoss "Human induced vibrations of steel structures" – RFS2-CT-2007-00033 – Design of footbridges – Guideline" si è operato un confronto tra le frequenze naturali della passerella e quelle all'interno dell'intervallo "critico" indicato al p.to 4.2 di seguito riportato:

Documento: PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 19 di 30* 

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 4.2 Step 2: Check of critical range of natural frequencies

The critical ranges for natural frequencies  $f_i$  of footbridges with pedestrian excitation are:

for vertical and longitudinal vibrations:

1,25 Hz  $\leq f_i \leq$  2,3 Hz

• for lateral vibrations: 0,5 Hz  $\leq f_i \leq$  1,2 Hz

Footbridges with frequencies for vertical or longitudinal vibrations of

$$2,5 \text{ Hz} \leq f_i \leq 4,6 \text{ Hz}$$

might be excited to resonance by the  $2^{nd}$  harmonic of pedestrian loads [1]. In that case, the critical frequency range for vertical and longitudinal vibrations expands to:

$$1,25$$
Hz  $\leq f_i \leq 4,6$ Hz

Lateral vibrations are not effected by the 2<sup>nd</sup> harmonic of pedestrian loads.

<u>Note:</u> A vertical vibration excitation by the second harmonic of pedestrian forces might take place. Until now there is no hint in the literature that onerous vibration of footbridges due to the second harmonic of pedestrians have occurred.

Di seguitos ono riportate le frequenze naturali e l'esito del controllo:

#### H = 7m

| f [Hz] | T [sec] | Dir. | Check    |                                       |
|--------|---------|------|----------|---------------------------------------|
| 2.04   | 0.49    | Υ    | Critical | Portale – Traslazionale longitudinale |

#### H = 3m

| f [Hz] | T [sec] | Dir. | Check        |                                       |
|--------|---------|------|--------------|---------------------------------------|
| 3.85   | 0.26    | Υ    | Not Critical | Portale – Traslazionale longitudinale |

#### Trave

| f [Hz] | T [sec] | Dir. | Check        |                   |
|--------|---------|------|--------------|-------------------|
| 6.57   | 0.15    | 7    | Not Critical | Trave - Verticale |

Si osserva che le frequenze principali sono fuori dal range critico tranne quella longitudinale associata al portale H=7m. Si osserva comunque che H=7m è il caso peggiore di una porzione di rampa che è comunque solidale a portali di altezza minori quindi più rigidi e con una frequenza globale sicuramente maggiore.

Nel progetto esecutivo l'analisi sarà approfondita con la modellazione dell'intero modulo di rampa.

Documento: PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

 Data:
 Novembre 2023

 Allegato 2 - pag. 20 di 30



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 5.3 Verifica di resistenza delle membrature in acciaio

# VERIFICHE TRAVE DAL NODO 21 AL NODO 25 / Sez. 1 HEA 220 (Impalcato)

**DATI GENERALI** 

Luce dell'asta 5.000 [m]

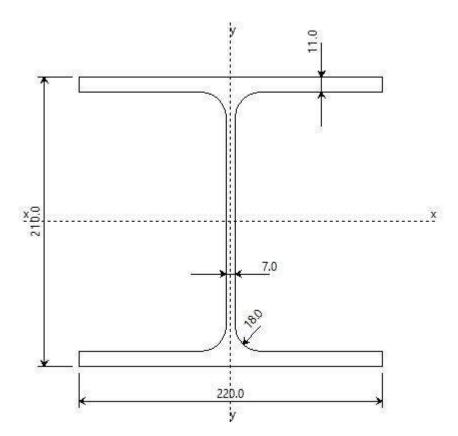
Sezione numero 1 HEA 220 (Impalcato)

 $\beta$ 1-2/x-x 1.00

β1-3/y-y 1.00

Materiale Acciaio S 235 (FE 360)

fy 235.00 [MPa]


fu 360.00 [MPa]

ε 1.00

#### Coefficienti di sicurezza:

 $\gamma$ Mo 1.10  $\gamma$ M1 1.10  $\gamma$ M2 1.25 fattore di confidenza 1.00

#### DATI INERZIALI PROFILO: HEA 220



**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 Allegato 2 - pag. 21 di 30



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Area 64.46 [cm<sup>2</sup>] A.Traz 64.46 [cm<sup>2</sup>] (L collegamento 0.0 [mm])

Jx 5419 [cm4] ix 9.2 [cm]

Wx 516057 [mm³] Zx 569471 [mm³]

Jy 1955 [cm4] iy 5.5 [cm]

Wy 177701 [mm<sup>3</sup>] Zy 270711 [mm<sup>3</sup>]

Jt 28 [cm4] Cw 193266 [cm6]

Curva di instabilità piano 1-2 (x-x) b Curva di instabilità piano 1-3 (y-y) c

#### Doppio T

B 220.0 [mm]

H 210.0 [mm]

tf 11.0 [mm]

tw 7.0 [mm]

r 18.0 [mm]

# Classificazione generale della sezione:

Compressione: 1 Flessione Mx: 1 Flessione My: 1

Nelle verifiche a trazione Nu,Rd=βAnetft,k/γ2 β=0.90

#### **VERIFICA DI RESISTENZA**

Sezione in classe 1

WxEff 569471 [mm³] Aw,y 20.79 [cm²]

Combinazione critica 2

Ascissa 2.500 [m]

 Mx,D
 -75 [kNm] Mx,D/Mx,R=0.61

 Vy,D
 0 [kN]
 Vy,D/Vy,R=0.00

 SD/SR
 0.61
 VERIFICATA

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

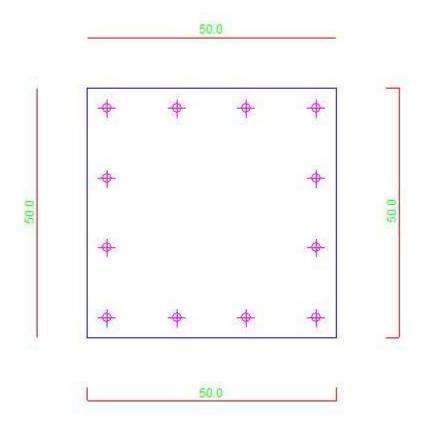
Codice: REL\_6\_4

Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


#### 5.3.1 Ritti in c.a.

Si riporta la verifica delle sezioni d'estremità ipotizzando:

Cls C28/35

#### Ritto 50cm x 50cm

Armatura B 450 C, Armatura longitudinale  $\phi$ 24, staffe a 3 braccia (in entrambe le direzioni)  $\phi$ 8 passo 200mm



# Verifica SLU a presso-flessione

| Condizione   | N    | Mx    | Му    | دم /د | Xx     | $\mathbf{X}_{Y}$ | X      | <b>E</b> MIN | d ε <sub>MIN</sub> | <b>Е</b> МАХ | d<br>ε <sub>MAX</sub> | - /-      |
|--------------|------|-------|-------|-------|--------|------------------|--------|--------------|--------------------|--------------|-----------------------|-----------|
| di carico    | [kN] | [kNm] | [kNm] | Sd/Sr | [1/cm] | [1/cm]           | [1/cm] | x<br>1000    | [cm]               | x<br>1000    | [cm]                  | EMIN/EMAX |
| 0001 Nodo 10 | -141 | -1    | 0     | 0.01  | 0      | 0                | 0      | -2.64        | 88.9               | -1.15        | 38.9                  | 2.287     |
| 0001 Nodo 22 | -82  | 3     | 0     | 0.01  | 0      | 0                | 0      | -3.26        | 55.6               | -0.33        | 5.5                   | 10.012    |
| 0002 Nodo 10 | -192 | -1    | 0     | 0.02  | 0      | 0                | 0      | -2.53        | 102.1              | -1.29        | 52.1                  | 1.96      |
| 0002 Nodo 22 | -133 | 3     | 0     | 0.01  | 0      | 0                | 0      | -2.98        | 65.2               | -0.7         | 15.2                  | 4.284     |
| 0003 Nodo 10 | -105 | -1    | 0     | 0.01  | 0      | 0                | 0      | -2.64        | 88.9               | -1.15        | 38.9                  | 2.287     |
| 0003 Nodo 22 | -61  | 2     | 0     | 0.01  | 0      | 0                | 0      | -3.26        | 55.6               | -0.33        | 5.5                   | 10.012    |
| 0004 Nodo 10 | -191 | -152  | 70    | 0.3   | 0      | 0                | 0      | -3.5         | 21.3               | 7.29         | 44.4                  | 0.48      |
| 0004 Nodo 22 | -147 | 131   | 0     | 0.23  | 0      | 0                | 0      | -3.5         | 10.2               | 13.65        | 39.8                  | 0.256     |
| 0005 Nodo 10 | -191 | -152  | -70   | 0.3   | 0      | 0                | 0      | -3.5         | 21.3               | 7.29         | 44.4                  | 0.48      |
|              |      |       |       |       |        |                  |        |              |                    |              |                       |           |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 23 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 0005 Nodo 22 | -147 | 131  | 0    | 0.23 | 0 | 0 | 0 | -3.5  | 10.2  | 13.65 | 39.8 | 0.256  |
|--------------|------|------|------|------|---|---|---|-------|-------|-------|------|--------|
| 0006 Nodo 10 | -19  | 150  | 70   | 0.35 | 0 | 0 | 0 | -3.5  | 17.2  | 9.58  | 47.1 | 0.365  |
| 0006 Nodo 22 | 25   | -126 | 0    | 0.29 | 0 | 0 | 0 | -3.5  | 6.3   | 24.22 | 43.7 | 0.145  |
| 0007 Nodo 10 | -19  | 150  | -70  | 0.35 | 0 | 0 | 0 | -3.5  | 17.2  | 9.58  | 47.1 | 0.365  |
| 0007 Nodo 22 | 25   | -126 | 0    | 0.29 | 0 | 0 | 0 | -3.5  | 6.3   | 24.22 | 43.7 | 0.145  |
| 0008 Nodo 10 | -130 | -46  | 233  | 0.47 | 0 | 0 | 0 | -3.5  | 13.5  | 11.44 | 44   | 0.306  |
| 0008 Nodo 22 | -87  | 41   | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 14.7  | 8.43  | 35.3 | 0.415  |
| 0009 Nodo 10 | -79  | 44   | 233  | 0.49 | 0 | 0 | 0 | -3.5  | 12.7  | 12.26 | 44.4 | 0.285  |
| 0009 Nodo 22 | -35  | -36  | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 9.4   | 15.2  | 40.6 | 0.23   |
| 0010 Nodo 10 | -130 | -46  | -233 | 0.47 | 0 | 0 | 0 | -3.5  | 13.5  | 11.44 | 44   | 0.306  |
| 0010 Nodo 22 | -87  | 41   | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 14.7  | 8.43  | 35.3 | 0.415  |
| 0011 Nodo 10 | -79  | 44   | -233 | 0.49 | 0 | 0 | 0 | -3.5  | 12.7  | 12.26 | 44.4 | 0.285  |
| 0011 Nodo 22 | -35  | -36  | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 9.4   | 15.2  | 40.6 | 0.23   |
| 0001 Nodo 9  | -141 | 1    | 0    | 0.01 | 0 | 0 | 0 | -2.64 | 88.9  | -1.15 | 38.9 | 2.287  |
| 0001 Nodo 21 | -82  | -3   | 0    | 0.01 | 0 | 0 | 0 | -3.26 | 55.6  | -0.33 | 5.5  | 10.012 |
| 0002 Nodo 9  | -192 | 1    | 0    | 0.02 | 0 | 0 | 0 | -2.53 | 102.1 | -1.29 | 52.1 | 1.96   |
| 0002 Nodo 21 | -133 | -3   | 0    | 0.01 | 0 | 0 | 0 | -2.98 | 65.2  | -0.7  | 15.2 | 4.284  |
| 0003 Nodo 9  | -105 | 1    | 0    | 0.01 | 0 | 0 | 0 | -2.64 | 88.9  | -1.15 | 38.9 | 2.287  |
| 0003 Nodo 21 | -61  | -2   | 0    | 0.01 | 0 | 0 | 0 | -3.26 | 55.6  | -0.33 | 5.5  | 10.012 |
| 0004 Nodo 9  | -19  | -150 | 70   | 0.35 | 0 | 0 | 0 | -3.5  | 17.2  | 9.58  | 47.1 | 0.365  |
| 0004 Nodo 21 | 25   | 126  | 0    | 0.29 | 0 | 0 | 0 | -3.5  | 6.3   | 24.22 | 43.7 | 0.145  |
| 0005 Nodo 9  | -19  | -150 | -70  | 0.35 | 0 | 0 | 0 | -3.5  | 17.2  | 9.58  | 47.1 | 0.365  |
| 0005 Nodo 21 | 25   | 126  | 0    | 0.29 | 0 | 0 | 0 | -3.5  | 6.3   | 24.22 | 43.7 | 0.145  |
| 0006 Nodo 9  | -191 | 152  | 70   | 0.3  | 0 | 0 | 0 | -3.5  | 21.3  | 7.29  | 44.4 | 0.48   |
| 0006 Nodo 21 | -147 | -131 | 0    | 0.23 | 0 | 0 | 0 | -3.5  | 10.2  | 13.65 | 39.8 | 0.256  |
| 0007 Nodo 9  | -191 | 152  | -70  | 0.3  | 0 | 0 | 0 | -3.5  | 21.3  | 7.29  | 44.4 | 0.48   |
| 0007 Nodo 21 | -147 | -131 | 0    | 0.23 | 0 | 0 | 0 | -3.5  | 10.2  | 13.65 | 39.8 | 0.256  |
| 0008 Nodo 9  | -79  | -44  | 233  | 0.49 | 0 | 0 | 0 | -3.5  | 12.7  | 12.26 | 44.4 | 0.285  |
| 0008 Nodo 21 | -35  | 36   | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 9.4   | 15.2  | 40.6 | 0.23   |
| 0009 Nodo 9  | -130 | 46   | 233  | 0.47 | 0 | 0 | 0 | -3.5  | 13.5  | 11.44 | 44   | 0.306  |
| 0009 Nodo 21 | -87  | -41  | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 14.7  | 8.43  | 35.3 | 0.415  |
| 0010 Nodo 9  | -79  | -44  | -233 | 0.49 | 0 | 0 | 0 | -3.5  | 12.7  | 12.26 | 44.4 | 0.285  |
| 0010 Nodo 21 | -35  | 36   | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 9.4   | 15.2  | 40.6 | 0.23   |
| 0011 Nodo 9  | -130 | 46   | -233 | 0.47 | 0 | 0 | 0 | -3.5  | 13.5  | 11.44 | 44   | 0.306  |
| 0011 Nodo 21 | -87  | -41  | 0    | 0.06 | 0 | 0 | 0 | -3.5  | 14.7  | 8.43  | 35.3 | 0.415  |

Max Sd/Sr =  $0.49 < 1 \rightarrow verifica soddisfatta$ 

Verifica SLU a taglio

Larghezza CLS - Resistenza
Altezza anima caratteristica a
utile trave trave compressione

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 24 di 30* 



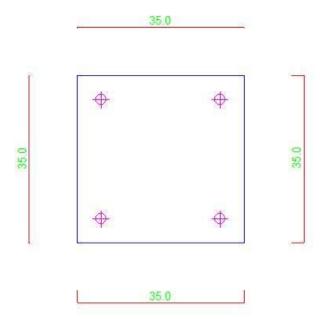
"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| d [mm] | bw [mm] | f <sub>ck</sub> [MPa] | 28    |
|--------|---------|-----------------------|-------|
| 450    | 500     | γς                    | 1.5   |
|        |         | $lpha_{\sf cc}$       | 0.85  |
|        |         | f <sub>cd</sub> [MPa] | 15.87 |
|        |         | EC2/NTC (*)           | NTC   |

CON STAFFE

|   | Nr.     | Diametro |            | Passo  |             |                       |       |           |             |     |
|---|---------|----------|------------|--------|-------------|-----------------------|-------|-----------|-------------|-----|
|   | braccia | barra    | Area barra | staffe | Acciaio     | cot(Theta)            | Alfa  | cot(Alfa) | CLS         | (*) |
|   | nb      | Db [mm]  | Ab [mm2]   | s [mm] | fyd [N/mm2] | $\geq$ 1 e $\leq$ 2.5 | [deg] |           | $\alpha$ cw | ν   |
| I | 3       | 8        | 50         | 200    | 391         | 1.00                  | 90.00 | 0.00      | 1.00        | 0.5 |


Vrd(acciaio) = 119 kN

Vrd(cls) = 1607 kN

Vrd = 119 kN > Vsd = 40 kN → verifica soddisfatta

#### Ritto 35cm x 35cm

Armatura B 450 C, Armatura longitudinale  $\phi$ 24, staffe a 2 braccia (in entrambe le direzioni)  $\phi$ 8 passo 200mm



**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 25 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# Verifica SLU a presso-flessione

| Condizione   | N    | Mx    | Му    | - 1/- | Xx     | Χ <sub>Y</sub> | х      | Емім      | d ε <sub>MIN</sub> | <b>Е</b> МАХ | d<br>ε <sub>ΜΑΧ</sub> |           |
|--------------|------|-------|-------|-------|--------|----------------|--------|-----------|--------------------|--------------|-----------------------|-----------|
| di carico    | [kN] | [kNm] | [kNm] | Sd/Sr | [1/cm] | [1/cm]         | [1/cm] | x<br>1000 | [cm]               | x<br>1000    | [cm]                  | EMIN/EMAX |
| 0001 Nodo 9  | -107 | 2     | 0     | 0.03  | 0      | 0              | 0      | -3.13     | 41.7               | -0.5         | 6.7                   | 6.263     |
| 0001 Nodo 21 | -82  | -4    | 0     | 0.02  | 0      | 0              | 0      | -3.5      | 31.5               | 0.39         | 3.5                   | 9.066     |
| 0002 Nodo 9  | -158 | 2     | 0     | 0.04  | 0      | 0              | 0      | -2.92     | 47.5               | -0.77        | 12.5                  | 3.799     |
| 0002 Nodo 21 | -133 | -4    | 0     | 0.04  | 0      | 0              | 0      | -3.44     | 35.9               | -0.08        | 0.9                   | 41.735    |
| 0003 Nodo 9  | -80  | 1     | 0     | 0.02  | 0      | 0              | 0      | -3.13     | 41.7               | -0.5         | 6.7                   | 6.263     |
| 0003 Nodo 21 | -61  | -3    | 0     | 0.02  | 0      | 0              | 0      | -3.5      | 31.5               | 0.39         | 3.5                   | 9.066     |
| 0004 Nodo 9  | -51  | -57   | 30    | 0.52  | 0      | 0              | 0      | -3.5      | 10                 | 11.6         | 33.2                  | 0.302     |
| 0004 Nodo 21 | -32  | 40    | 0     | 0.35  | 0      | 0              | 0      | -3.5      | 4.9                | 21.49        | 30.1                  | 0.163     |
| 0005 Nodo 9  | -51  | -57   | -30   | 0.52  | 0      | 0              | 0      | -3.5      | 10                 | 11.6         | 33.2                  | 0.302     |
| 0005 Nodo 21 | -32  | 40    | 0     | 0.35  | 0      | 0              | 0      | -3.5      | 4.9                | 21.49        | 30.1                  | 0.163     |
| 0006 Nodo 9  | -109 | 60    | 30    | 0.48  | 0      | 0              | 0      | -3.5      | 11.6               | 9.83         | 32.6                  | 0.356     |
| 0006 Nodo 21 | -90  | -46   | 0     | 0.34  | 0      | 0              | 0      | -3.5      | 5.7                | 17.92        | 29.3                  | 0.195     |
| 0007 Nodo 9  | -109 | 60    | -30   | 0.48  | 0      | 0              | 0      | -3.5      | 11.6               | 9.83         | 32.6                  | 0.356     |
| 0007 Nodo 21 | -90  | -46   | 0     | 0.34  | 0      | 0              | 0      | -3.5      | 5.7                | 17.92        | 29.3                  | 0.195     |
| 0008 Nodo 9  | -71  | -16   | 102   | 0.91  | 0      | 0              | 0      | -3.5      | 6                  | 18.15        | 31.1                  | 0.193     |
| 0008 Nodo 21 | -52  | 10    | 0     | 0.04  | 0      | 0              | 0      | -3.5      | 13.5               | 5.56         | 21.5                  | 0.629     |
| 0009 Nodo 9  | -88  | 19    | 102   | 0.89  | 0      | 0              | 0      | -3.5      | 6.4                | 17.06        | 31.2                  | 0.205     |
| 0009 Nodo 21 | -69  | -16   | 0     | 0.08  | 0      | 0              | 0      | -3.5      | 10                 | 8.74         | 25                    | 0.4       |
| 0010 Nodo 9  | -71  | -16   | -102  | 0.91  | 0      | 0              | 0      | -3.5      | 6                  | 18.15        | 31.1                  | 0.193     |
| 0010 Nodo 21 | -52  | 10    | 0     | 0.04  | 0      | 0              | 0      | -3.5      | 13.5               | 5.56         | 21.5                  | 0.629     |
| 0011 Nodo 9  | -88  | 19    | -102  | 0.89  | 0      | 0              | 0      | -3.5      | 6.4                | 17.06        | 31.2                  | 0.205     |
| 0011 Nodo 21 | -69  | -16   | 0     | 0.08  | 0      | 0              | 0      | -3.5      | 10                 | 8.74         | 25                    | 0.4       |
| 0001 Nodo 10 | -107 | -2    | 0     | 0.03  | 0      | 0              | 0      | -3.13     | 41.7               | -0.5         | 6.7                   | 6.263     |
| 0001 Nodo 22 | -82  | 4     | 0     | 0.02  | 0      | 0              | 0      | -3.5      | 31.5               | 0.39         | 3.5                   | 9.066     |
| 0002 Nodo 10 | -158 | -2    | 0     | 0.04  | 0      | 0              | 0      | -2.92     | 47.5               | -0.77        | 12.5                  | 3.799     |
| 0002 Nodo 22 | -133 | 4     | 0     | 0.04  | 0      | 0              | 0      | -3.44     | 35.9               | -0.08        | 0.9                   | 41.735    |
| 0003 Nodo 10 | -80  | -1    | 0     | 0.02  | 0      | 0              | 0      | -3.13     | 41.7               | -0.5         | 6.7                   | 6.263     |
| 0003 Nodo 22 | -61  | 3     | 0     | 0.02  | 0      | 0              | 0      | -3.5      | 31.5               | 0.39         | 3.5                   | 9.066     |
| 0004 Nodo 10 | -109 | -60   | 30    | 0.48  | 0      | 0              | 0      | -3.5      | 11.6               | 9.83         | 32.6                  | 0.356     |
| 0004 Nodo 22 | -90  | 46    | 0     | 0.34  | 0      | 0              | 0      | -3.5      | 5.7                | 17.92        | 29.3                  | 0.195     |
| 0005 Nodo 10 | -109 | -60   | -30   | 0.48  | 0      | 0              | 0      | -3.5      | 11.6               | 9.83         | 32.6                  | 0.356     |
| 0005 Nodo 22 | -90  | 46    | 0     | 0.34  | 0      | 0              | 0      | -3.5      | 5.7                | 17.92        | 29.3                  | 0.195     |
| 0006 Nodo 10 | -51  | 57    | 30    | 0.52  | 0      | 0              | 0      | -3.5      | 10                 | 11.6         | 33.2                  | 0.302     |
| 0006 Nodo 22 | -32  | -40   | 0     | 0.35  | 0      | 0              | 0      | -3.5      | 4.9                | 21.49        | 30.1                  | 0.163     |
| 0007 Nodo 10 | -51  | 57    | -30   | 0.52  | 0      | 0              | 0      | -3.5      | 10                 | 11.6         | 33.2                  | 0.302     |
| 0007 Nodo 22 | -32  | -40   | 0     | 0.35  | 0      | 0              | 0      | -3.5      | 4.9                | 21.49        | 30.1                  | 0.163     |
| 0008 Nodo 10 | -88  | -19   | 102   | 0.89  | 0      | 0              | 0      | -3.5      | 6.4                | 17.06        | 31.2                  | 0.205     |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| 0008 Nodo 22 | -69 | 16  | 0    | 0.08 | 0 | 0 | 0 | -3.5 | 10   | 8.74  | 25   | 0.4   |
|--------------|-----|-----|------|------|---|---|---|------|------|-------|------|-------|
| 0009 Nodo 10 | -71 | 16  | 102  | 0.91 | 0 | 0 | 0 | -3.5 | 6    | 18.15 | 31.1 | 0.193 |
| 0009 Nodo 22 | -52 | -10 | 0    | 0.04 | 0 | 0 | 0 | -3.5 | 13.5 | 5.56  | 21.5 | 0.629 |
| 0010 Nodo 10 | -88 | -19 | -102 | 0.89 | 0 | 0 | 0 | -3.5 | 6.4  | 17.06 | 31.2 | 0.205 |
| 0010 Nodo 22 | -69 | 16  | 0    | 0.08 | 0 | 0 | 0 | -3.5 | 10   | 8.74  | 25   | 0.4   |
| 0011 Nodo 10 | -71 | 16  | -102 | 0.91 | 0 | 0 | 0 | -3.5 | 6    | 18.15 | 31.1 | 0.193 |
| 0011 Nodo 22 | -52 | -10 | 0    | 0.04 | 0 | 0 | 0 | -3.5 | 13.5 | 5.56  | 21.5 | 0.629 |

# Verifica SLU a taglio

|             | Larghezza |
|-------------|-----------|
| Altezza     | anima     |
| utile trave | trave     |
| d [mm]      | bw [mm]   |
| 450         | 500       |

CLS - Resistenza caratteristica a compressione

| f <sub>ck</sub> [MPa] | 28    |
|-----------------------|-------|
| γς                    | 1.5   |
| $\alpha_{\sf cc}$     | 0.85  |
| f <sub>cd</sub> [MPa] | 15.87 |
| EC2/NTC (*)           | NTC   |

CON STAFFE

|   | Nr.     | Diametro |            | Passo  |             |                       |       |           |                    |     |
|---|---------|----------|------------|--------|-------------|-----------------------|-------|-----------|--------------------|-----|
|   | braccia | barra    | Area barra | staffe | Acciaio     | cot(Theta)            | Alfa  | cot(Alfa) | CLS                | (*) |
| _ | nb      | Db [mm]  | Ab [mm2]   | s [mm] | fyd [N/mm2] | $\geq$ 1 e $\leq$ 2.5 | [deg] |           | $\alpha \text{cw}$ | ν   |
| Ī | 2       | 8        | 50         | 200    | 391         | 1.00                  | 90.00 | 0.00      | 1.00               | 0.5 |

Vrd(acciaio) = 53 kN

Vrd(cls) = 375 kN

Vrd = 53 kN > Vsd = 35 kN → verifica soddisfatta

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 27 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 5.4 Verifica di resistenza solaio

Solaio tipo Predalle di altezza complessiva 30cm con alleggerimenti in polistirolo, spessore lastra inferiore 5cm, soletta superiore 6cm, larghezza nervature 40cm/120cm.

Luce L = 5.0m

Cls C32/40

Armatura B450C – Intradosso: 1φ12/nervatura, estradosso:rete elettrosaldata φ6 passo 100x100mm

Altezza utile d = 250 mm - 30 mm = 220 mm

#### Carichi:

Pavimentazione: 0.70 kN/m2

Solaio: 5.40 kN/m2

Folla: 5.00 kN/m2

 $Qsd = 1.35 \times (0.70 + 5.40 + 5.00) = 15.00 \text{ kN/m2}$ 

#### Sollecitazioni:

 $Vsd = \frac{1}{2} Qsd L = 22.5 kN/m$ 

 $Msd = 1/8 Qsd L^2 = 16.9 kNm/m$ 

#### Verifica a flessione:

Mrd = 0.9 d fyd Af =  $0.9 \times 220 \times 450 / 1.15 \times (3 \times 113) / 1.2 = 21.9 \text{ kNm/m} \rightarrow \text{Verifica soddisfatta}$ 

#### Verifica a taglio

| CLS - Resistenza caratteristica a compressione       | f <sub>ck</sub> [MPa] | 32     |
|------------------------------------------------------|-----------------------|--------|
| Coefficiente di sicurezza                            | γς                    | 1.5    |
|                                                      | $lpha_{\sf cc}$       | 0.85   |
|                                                      | f <sub>cd</sub> [MPa] | 18.13  |
|                                                      |                       |        |
| Altezza utile                                        | d [mm]                | 220    |
| Larghezza nervatura                                  | bw [mm]               | 400    |
| Rapporto geometrico armatura tesa estesa per (lbd+d) | $\delta$ (max 2%)     | 0.386% |
| Tensione media di compressione                       | σcp [N/mm2]           | 0      |

**Documento:** PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

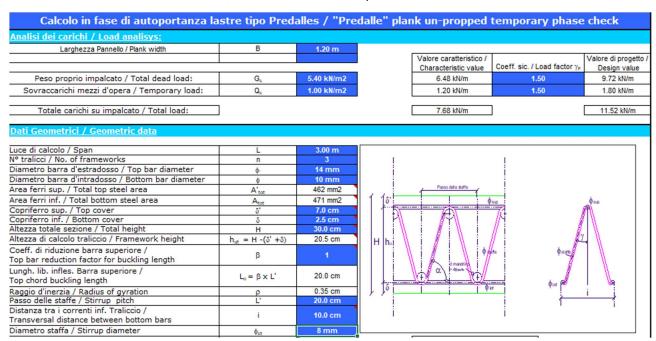
**Data:** Novembre 2023 Allegato 2 - pag. 28 di 30

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| $k = 1 + (200 / d)^{0.5} \le 2$                                           | k             | 1.95  |
|---------------------------------------------------------------------------|---------------|-------|
| $v_min = 0.035 k^{(3/2)} fck^{0.5}$                                       | v_min [N/mm2] | 0.541 |
|                                                                           | k1            | 0.150 |
|                                                                           | Crd,c         | 0.180 |
| $\tau Rd = 1/\gamma c \ Crd, c \ k \ (100 \ \rho \ fck)^{1/3} + k1 \ σcp$ | τRd [N/mm2]   | 0.542 |
| Tensione tangenziale resistente                                           | τRd [N/mm2]   | 0.542 |
| Taglio resistente                                                         | VRd [kN]      | 47.67 |
| Interasse nervatura                                                       | i [m]         | 1.2   |
| Taglio resistente distribuito                                             | VRd [kN/m]    | 39.72 |

Vrd = 39.72 kN/m > Vsd → Verifica soddisfatta


5.4.1 Verifiche traliccio lastra in fase di getto

#### Carichi:

P.p. = 5.40 kN/m2

Mezzi d'opera: 1.00 kN/m2

Carico totale: Qk = 6.40 kN/m2 assumendo  $\gamma$  = 1.5  $\rightarrow$  Qsd = 9.60 kN/m2



Documento: PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

**Data:** Novembre 2023 *Allegato 2 - pag. 29 di 30* 



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche - Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| nclinazione trasversale staffa /<br>Stirrup transversal inclination                     | γ                                                     | 8.33 deg                                     | Acciaio / St                                                  | Acciaio / Steel                                                |                 |           |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-----------------|-----------|
| nclinazione longitudinale staffa /<br>Stirrup longitudinal inclination                  | α                                                     | 70.13 deg                                    |                                                               | Valore carat. snervamento /<br>Characteristic yelding strength |                 | 450 N/mm2 |
| unghezza staffa / Stirrup length                                                        | Lat                                                   | 23.1 cm                                      | $\epsilon = (235 / f_{vk})$                                   | $\varepsilon = (235 / f_{yk})^{0.5}$                           |                 | 0.723     |
| Coeff. di riduzione staffa / Stirrup reduction factor                                   | $\beta_{st}$                                          | 0.90                                         |                                                               |                                                                |                 |           |
| ungh. lib. infles. staffa / Stirrup buckling length                                     | L <sub>st o</sub> = B <sub>st</sub> x L <sub>st</sub> | 20.8 cm                                      | Coeff. sic. / Material s                                      | Coeff. sic. / Material safe factor                             |                 | 1.15      |
|                                                                                         | 2                                                     | 0.20 cm                                      |                                                               | ore di progetto snervamento /<br>Design yelding strength       |                 | 391 N/mm2 |
|                                                                                         | ρ <sub>st</sub>                                       | Valora caratteristics /                      |                                                               | trength                                                        | f <sub>yd</sub> |           |
| aggio d'inerzia staffa / Stirrup radius of gyration  Sollecitazioni / Strain:           | Pst                                                   | Valore caratteristico /                      | Valore di progetto /                                          | trength                                                        | *yd             |           |
| iollecitazioni / Strain:                                                                |                                                       | Characteristic value                         | Valore di progetto /<br>Design value                          | trength                                                        | *yd             |           |
| Sollecitazioni / Strain:                                                                | M <sub>max</sub>                                      | Characteristic value<br>8.64 kNm             | Valore di progetto /<br>Design value<br>12.96 kNm             | trength                                                        | *yd             |           |
| collecitazioni / Strain: omento massimo / Max bending moment                            |                                                       | Characteristic value                         | Valore di progetto /<br>Design value                          | trength                                                        | *yd             |           |
| collecitazioni / Strain:  omento massimo / Max bending moment aglio massimo / Max shear | M <sub>max</sub>                                      | Characteristic value<br>8.64 kNm             | Valore di progetto /<br>Design value<br>12.96 kNm             | trength                                                        | *ya             |           |
| Collecitazioni / Strain:                                                                | M <sub>max</sub><br>V <sub>max</sub>                  | Characteristic value<br>8.64 kNm<br>11.52 kN | Valore di progetto /<br>Design value<br>12.96 kNm<br>17.28 kN | trength                                                        | "yd             |           |

|                                                                  |                                                  |           | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
|------------------------------------------------------------------|--------------------------------------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| Snellezza / Slenderness                                          | $\lambda = L_o / \rho$                           | 57.1      |            | From EN1993-1-1, assuming buck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ling curve "c" |                |
| Snellezza adimensionale / Non-dimensional slenderness            | $\lambda' = \lambda / 93.9 / \epsilon$           | 0.842     | ]          | imperfection factor α 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |
|                                                                  |                                                  |           | -          | Ф factor 1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9              |                |
| Coeff. di riduzione per instabilità / Buckling reduction factor  | χ                                                | 0.636     | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Ratio S/R      |
| Design buckling resistance axial force                           | $N'_{Rd} = \chi A'_{tot} f_{yd}$                 | 114.89 kN | > N' =     | 63.22 kN <u>Verifica soddisfa</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tta / Verified | 0.55           |
| Verifica a trazione correnti inferiori / Bottom b                | ar tension check:                                |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| vermee a tracione correna interiori / bottom b                   | ar tension encent                                |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Ratio S/R      |
| Sforzo assiale resistente di progetto /                          |                                                  | ** ** *** | 1          | - Control of the Cont |                |                |
| Design resistance tension force                                  | $N_{Rd} = A_{tot} f_{yd}$                        | 92.20 kN  | > N =      | 31.61 kN <u>Verifica soddisfa</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tta / Verified | 0.34           |
|                                                                  |                                                  |           | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Verifica a compressione staffa / Stirrup bar co                  | mpression check:                                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
|                                                                  |                                                  |           | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Snellezza / Slenderness                                          | $\lambda_{st} = L_{st o} / \rho_{st}$            | 103.9     |            | From EN1993-1-1, assuming buck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ling curve "c" |                |
| Snellezza adimensionale / Non-dimensional slenderness            | $\lambda'_{st} = \lambda_{st} / 93.9 / \epsilon$ | 1.531     | 1          | imperfection factor α 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |
| ф factor 1.9987                                                  |                                                  |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Coeff. di riduzione per instabilita' / Buckling reduction factor | χ                                                | 0.305     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Ratio S/R      |
| Sforzo assiale resistente di progetto /                          | $N_{st\_Rd} = \chi A_{st} f_{vd}$                | 5.99 kN   | > Nst =    | 3.09 kN Verifica soddisfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tta / Varified | 0.52           |
| Design buckling resistance axial force                           | rist_Rd = 1 Ast Tyd                              | 5.55 KI   | list-      | 3.03 KIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ttu / Vermeu   | 0.02           |
| Controlle defense killet / Defense killer et ete                 |                                                  |           |            | T. 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | / Charlessiah  |
| Controllo deformabilita' / Deformability check                   |                                                  |           |            | Indicenza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i pesi accialo | / Steel weight |
| Distanza baricentro barre da filo inf. /                         |                                                  | 950 9     | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Barycenter distance from bottom bars                             | YG                                               | 10.1 cm   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Momento d'inerzia traliccio / Framework moment of inertia        | J <sub>G</sub>                                   | 933.5 cm4 | 1          | Tor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bars weight    | 3.0 kg/m2      |
|                                                                  |                                                  |           | ratio L/ f |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m bars weight  | 3.1 kg/m2      |
| Freccia sotto i carichi permanenti / Sag under dead load         | $f_G$                                            | 0.3 cm    | 861        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p bars weight  | 3.6 kg/m2      |
| Freccia sotto i carichi totali/ Sag under total load             | f <sub>G+Q</sub>                                 | 0.4 cm    | 726        | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l bars weight  | 9.7 kg/m2      |
|                                                                  |                                                  |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 2 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto Documento:

Codice: REL\_6\_4

Data: Novembre 2023 Allegato 2 - pag. 30 di 30

# Passerella ciclopedonale fiume Reno – Sasso Marconi

# Progetto Definitivo

# Relazione tecnica delle strutture metalliche STR\_REL\_6\_4

# **ALLEGATO Z**

Software Enexsys WinStrand

- Estremi della licenza software
- Programmi di calcolo strutturale: descrizione delle specifiche generali, librerie di elementi finiti e capacità di modellazione delle azioni, materiali e schematizzazione della struttura e dei vincoli, convenzioni



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# **SOMMARIO**

| 1 | ES            | TREMI DELLA LICENZA DEL DEL SOFTWARE                                                                      | 4      |
|---|---------------|-----------------------------------------------------------------------------------------------------------|--------|
| 2 | DE            | SCRIZIONE DEL SOFTWARE                                                                                    | 5      |
|   | 2.1           | Nodi                                                                                                      | 7      |
|   | 2.2           | Elementi tipo biella (truss)                                                                              | 8      |
|   | 2.3           | Elementi tipo trave                                                                                       | 9      |
|   | 2.4           | Elementi tipo trave su suolo alla Winkler                                                                 | 10     |
|   | 2.5           | Elementi tipo pilastro                                                                                    | 11     |
|   | 2.6           | Elementi tipo plinto su suolo alla Winkler                                                                | 12     |
|   | 2.7           | Elementi setto                                                                                            | 13     |
|   | 2.8           | Elementi triangolari                                                                                      | 14     |
|   | 2.9           | Elementi a 4 nodi                                                                                         | 15     |
|   | 2.10          | Elementi isoparametrici a 8 nodi                                                                          | 16     |
|   | 2.11          | Solai                                                                                                     | 16     |
|   | 2.12          | Aree di carico                                                                                            | 17     |
|   | 2.13          | Condizioni e combinazioni di carico                                                                       | 18     |
| 3 | TE            | ST DI VALIDAZIONE DEL SOFTWARE                                                                            | 19     |
| 4 | BE            | NCHMARK                                                                                                   | 20     |
|   | 4.1           | Test 001 - Frequenze naturali di vibrazione di una trave appoggiata                                       | 21     |
|   | 4.2           | Test 002 - Frequenze naturali di vibrazione di una trave a mensola                                        | 23     |
|   | 4.3           | Test 003 - Frequenza naturale di vibrazione di un oscillatore semplice                                    | 25     |
|   | 4.4           | Test 004 - Trave piana con estremi incastrati                                                             | 27     |
|   | 4.5           | Test 005 - Sistema piano di aste sospese                                                                  | 29     |
|   | 4.6           | Test 006 - Stato tensionale di una trave inflessa                                                         | 31     |
|   | 4.7           | Test 007 - Stato tensionale di una trave inflessa                                                         | 33     |
|   | 4.8           | Test 008 - Sistema piano di aste sospese                                                                  | 35     |
|   | 4.9           | Test 009 - Trave a mensola soggetta a momento torcente concentrato                                        | 37     |
|   | 4.10          | Test 010 - Telaio piano                                                                                   | 39     |
|   | 4.11          | Test 011 - Trave reticolare piana                                                                         | 41     |
|   | 4.12<br>trave | Test 012 - Controllo dell'analisi condotta considerando il comportamento monolatero degli elementi bie 43 | ılla - |
|   | 4.13          | Test 013 - Aste piane e carico termico                                                                    | 46     |
|   |               |                                                                                                           |        |

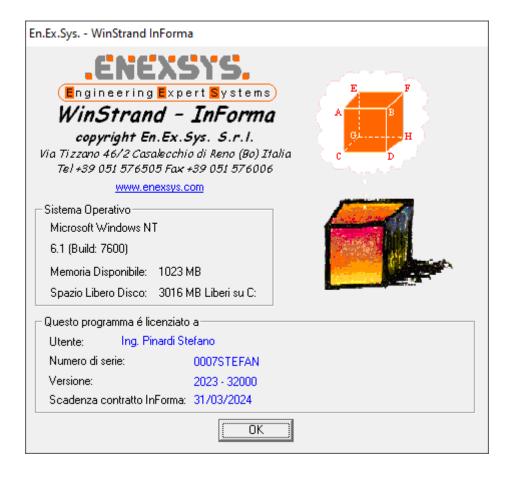


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


Data: Novembre 2023 Allegato Z - Pag. 3 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 1 ESTREMI DELLA LICENZA DEL DEL SOFTWARE



Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 4 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2 DESCRIZIONE DEL SOFTWARE

En.Ex.Sys. WinStrand Structural Analisys & Design Ditta produttrice: En.Ex.Sys. s.r.l. - Via Tizzano 46/2 - Casalecchio di Reno (Bologna) Sigla: WinStrand Piattaforma software: Microsoft Windows XP Home, Microsoft Windows XP Home Professional Documentazione in uso: Manuale teorico - Manuale d'uso Campo di applicazione: Analisi statica e dinamica di strutture in campo elastico lineare. Elementi finiti implementati Truss. Beam (Modellazione di Travi e Pilastri). Travi su suolo elastico alla Winckler. Plinti su suolo elastico alla Winckler. Elementi Shear Wall per la modellazione di pareti di taglio. Elementi shell (lastra/piastra) equivalenti. Elementi Isoparametrici a 8 Nodi Shell (lastra/piastra). Schemi di Carico

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 5 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

Carichi nodali concentrati.

Carichi applicati direttamente agli elementi.

Carichi Superficiali.

Tipo di Risoluzione

Analisi statica e/o dinamica in campo lineare con il metodo dell'equilibrio.

Fattorizazione LDL<sup>T</sup>.

Analisi Statica:

modellazione generale 6 gradi di libertà per nodo.

ipotesi di solai infinitamente rigidi nel proprio piano (3 gradi di libertà per nodo + 3 per impalcato).

Analisi dinamica. (Nel caso di analisi modale gli autovettori ed autovalori possono essere calcolati mediante *subspace iteration* oppure tramite il *metodo dei vettori di Ritz*):

Via statica equivalente.

Modale con il metodo dello spettro di risposta.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

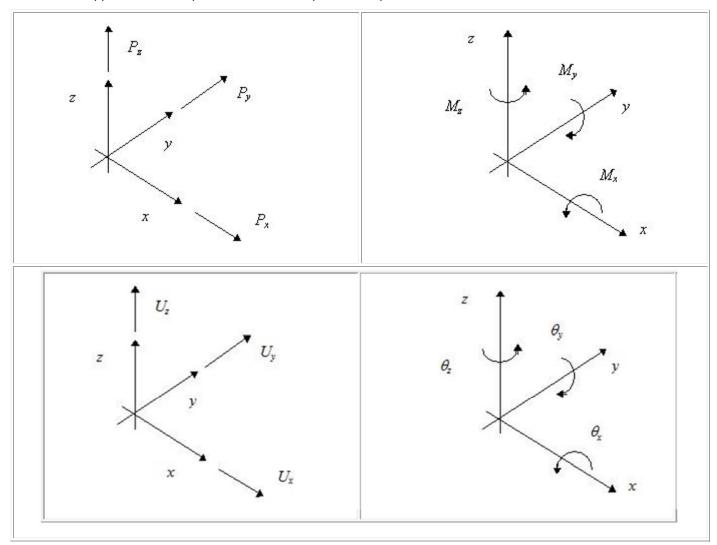
Codice: REL\_6\_4
Data: Novemb

Novembre 2023 Allegato Z - Pag. 6 di 51

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### 2.1 Nodi


I nodi vengono numerati, con riferimento a una sezione orizzontale, da sinistra a destra, dal basso verso l'alto e per quote crescenti.

L'impalcato di appartenenza di un nodo è definito, in generale, dalla prima delle tre cifre che ne definiscono il numero, possono tuttavia presentarsi casi in cui si hanno più di 100 nodi per solaio nel qual caso il solaio di appartenenza è specificato dall'ultimo valore stampato nella riga dei dati relativi al nodo.

La maschera dei vincoli è costituita dai valori 0 e 1. Il valore 1 indica che per il nodo in riferimento il grado di libertà correlativo è soppresso mentre il valore 0 indica che è libero.

Nel caso di edifici civili multipiano l'asse z generale coincide con l'asse verticale rivolto verso l'alto.

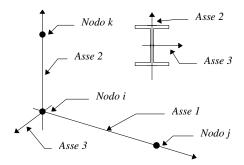
La terna di riferimento generale è destrorsa per cui si hanno i seguenti segni positivi per i carichi o per le coppie direttamente applicati ai nodi e per le associate componenti di spostamento:



Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL 6 4

Codice: REL\_6\_4
Data: Novembre 2023 Allegato Z - Pag. 7 di 51




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

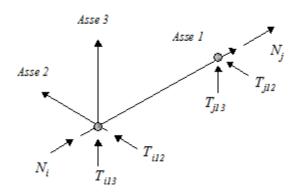
PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.2 Elementi tipo biella (truss)

Gli elementi tipo biella sono definiti da:

- nodo iniziale i;
- nodo finale j;
- nodo k che definisce l'orientamento nello spazio della terna riferimento locale dell'elemento;




- il valore di S<sub>0</sub> ovvero l'azione assiale di pretensione cui si suppone soggetto l'elemento;
- il tipo di materiale di cui è costituito l'elemento;
- il tipo di sezione che ne definisce le caratteristiche inerziali;
- la lunghezza.

#### Va rilevato che:

- il valore di S<sub>0</sub> interviene (se diverso da zero) esclusivamente nella definizione della matrice di rigidezza dell'elemento (secondo la formulazione della matrice di rigidezza geometrica K<sub>g</sub>) e non fornisce alcun contributo all'equilibrio globale dei nodi terminali dell'elemento;
- il correlativo carico può, a discrezione dell'operatore, intervenire nell'equilibrio strutturale secondo i coefficienti di interazione specificati nelle combinazioni di carico.

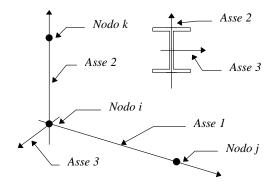
Le sollecitazioni negli elementi biella sono da intendersi nel sistema di riferimento locale dell'elemento.

Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni così diretti:



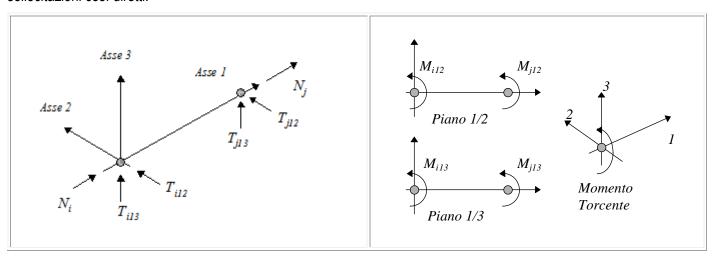
Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 8 di 51


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.3 Elementi tipo trave


Gli elementi tipo trave sono definiti da:

- nodo iniziale i;
- nodo finale j;
- nodo k che definisce l'orientamento nello spazio della terna riferimento locale dell'elemento.



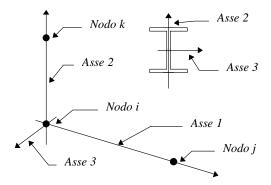
Gli elementi tipo trave possono avere valori di efficacia dei vincoli alle estremità dell'elemento variabili fra 0 e 100%, nei due piani 1-2 e 1-3 dell'elemento, dando quindi la possibilità di considerare aste non perfettamente incastrate.

Le sollecitazioni nelle travi sono da intendersi nel sistema di riferimento locale dell'elemento e si riferiscono all'asta. Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni così diretti:



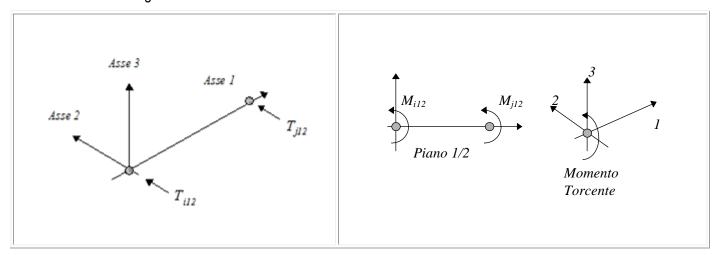
Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 9 di 51


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.4 Elementi tipo trave su suolo alla Winkler


Ogni elemento tipo trave su suolo alla Winkler viene identificato da:

- nodo iniziale i;
- nodo finale j;
- nodo k che definisce l'orientamento nello spazio della terna di riferimento locale dell'elemento.



La trave si intende vincolata ad un sottospazio elastico a comportamento bilatero.

Le sollecitazioni nelle travi di fondazione sono da intendersi nel sistema di riferimento locale dell'elemento. Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni come in figura:

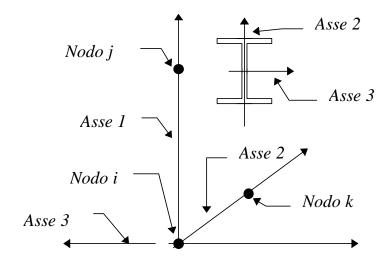


Le pressioni sul terreno sono da intendersi positive se concordi all'asse z globale (stato di compressione del terreno).

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembre 2023 Allegato Z - Pag. 10 di 51

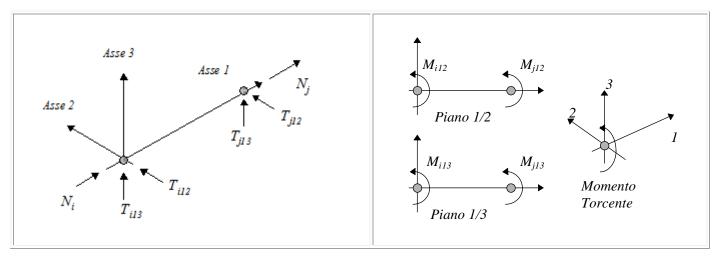



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.5 Elementi tipo pilastro

Gli elementi tipo pilastro sono definiti da:


- nodo iniziale i;
- nodo finale j;
- nodo k che definisce l'orientamento nello spazio della terna di riferimento locale dell'elemento.



Gli elementi tipo pilastro possono avere valori di efficacia dei vincoli alle estremità dell'elemento variabili fra 0 e 100%, nei due piani 1-2 e 1-3 dell'elemento, dando quindi la possibilità di considerare aste non perfettamente incastrate.

In generale, se non diversamente disposto, l'asse 2 coincide, per i pilastri, con l'asse y globale e pertanto la disposizione della sezione coincide con quella che si avrebbe in una vista in pianta.

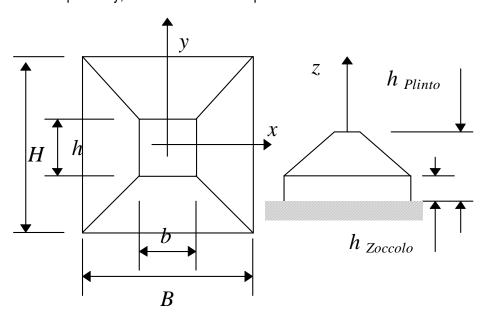
Le sollecitazioni nei pilastri sono da intendersi nel sistema di riferimento locale dell'elemento, e si riferiscono all'asta. Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni così diretti:



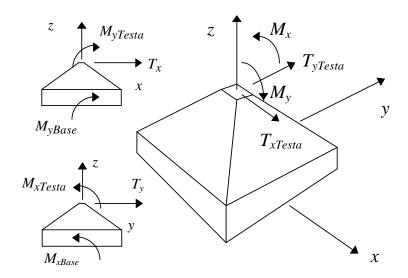
Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Codice:REL\_6\_4Data:Novembre 2023Allegato Z - Pag. 11 di 51




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto


# 2.6 Elementi tipo plinto su suolo alla Winkler

Il plinto viene identificato con il numero del nodo a cui fa capo.

L'elemento, con riferimento al piano x-y, risulta essere così disposto:

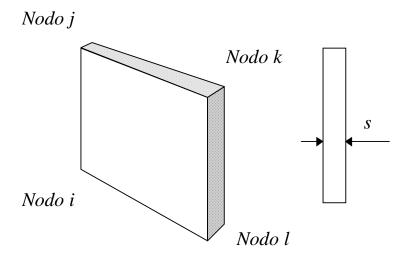


Le sollecitazioni nei plinti sono da intendersi nel sistema di riferimento locale dell'elemento. Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni così diretti:

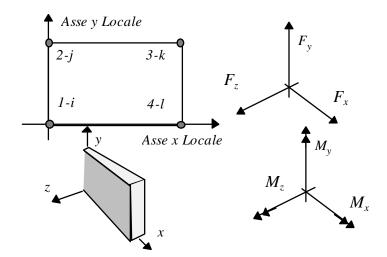


Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 12 di 51




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.7 Elementi setto

L'elemento setto viene identificato mediante i quattro nodi (i, j, k, l) di bordo.



L'elemento parete viene individuato tramite il numero dei due nodi a numerazione più bassa cui fa capo l'elemento. La numerazione dei nodi e le convenzioni sulle sollecitazioni agenti nel setto sono le seguenti:

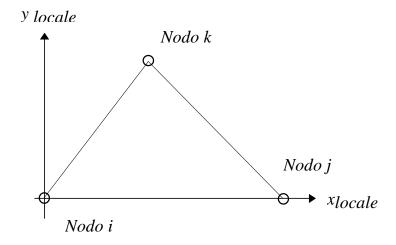


Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: Data: REL\_6\_4 Novembre 2023

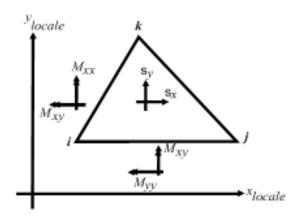
Allegato Z - Pag. 13 di 51




"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.8 Elementi triangolari


L'elemento triangolare è individuato tramite il numero dei nodi di vertice dello stesso.

Gli assi del sistema di riferimento locale risultano così disposti:



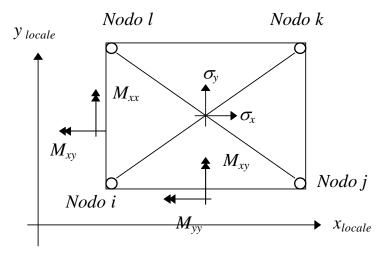
- L'asse x<sub>locale</sub> ha direzione parallela alla retta congiungente i nodi i e j, è passante per i medesimi nodi ed ha verso positivo da i a j.
- L'asse y<sub>locale</sub> è ortogonale all'asse x<sub>locale</sub>, passa per il nodo i e verso positivo dalla parte del nodo k;
- L'asse z<sub>locale</sub> è ottenuto per prodotto vettoriale fra x<sub>locale</sub> e y<sub>locale</sub>.

Le sollecitazioni indotte negli elementi triangolari come tensioni, momenti e tagli medi sono valutati nel centro dell'elemento.



Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 14 di 51


"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 2.9 Elementi a 4 nodi

L'elemento a 4 nodi è individuato tramite il numero dei nodi di vertice dello stesso.

Gli assi del sistema di riferimento locale risultano così disposti:

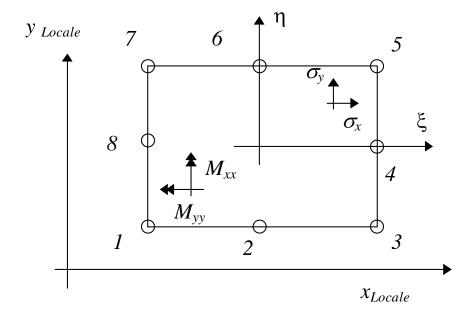


Il sistema di riferimento locale dell'elemento risulta essere cosi disposto:

- L'asse x locale sulla congiungente i nodi i e j da i verso j;
- L'asse y locale sulla congiungente i nodi i e I da i verso I;
- L'asse z locale e ottenuto per prodotto vettoriale fra x<sub>locale</sub> e y<sub>locale</sub>;
- Le tensioni medie nell'elemento ( $\sigma_x$ ,  $\sigma_y$ ,  $\tau_{xy}$ ) e i momenti medi ( $M_x$ ,  $M_y$ ,  $M_{xy}$ ) sono anch'essi da intendersi diretti lungo le direzioni sopra citate.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 15 di 51




PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 2.10 Elementi isoparametrici a 8 nodi

L'elemento a 8 nodi è individuato tramite il numero dei nodi di vertice e dei nodi medi dello stesso.

Le sollecitazioni presenti negli elementi finiti isoparametrici a 8 nodi sono valutate in 4 punti all'interno di ogni elemento. In particolare i 4 punti in cui vengono fornite le sollecitazioni corrispondono a 4 punti di GAUSS (vedi R.D. Cook - Concepts and Applications of Finite Element Analysis, New Jork, Wiley, 1981).



Il sistema di riferimento locale dell'elemento è così disposto

- L'asse x<sub>locale</sub> dell'elemento è disposto lungo la congiungente i nodi 1 e 3;
- L'asse y<sub>locale</sub> dell'elemento è disposto lungo la congiungente i nodi 1 e 7;
- L'asse z<sub>locale</sub> è ottenuto mediante prodotto vettoriale fra gli assi x<sub>locale</sub> e y<sub>locale</sub>.

Le sollecitazioni sono da intendersi nel riferimento locale dell'elemento sopra descritto.

#### 2.11 Solai

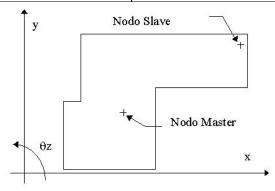
La dizione solai indica esclusivamente nodi della struttura legati da relazione cinematica (ipotesi di impalcato infinitamente rigido).

Seguendo tale ipotesi di calcolo, le componenti di spostamento del singolo nodo di impalcato vengono in parte riferite a quelle di un nodo master, solitamente coincidente con il centro di massa dell'impalcato. In particolare le componenti di spostamento nodale sono così definite:

| Componente di spostamento | espressa da                                                                                       |
|---------------------------|---------------------------------------------------------------------------------------------------|
| Ux                        | U <sub>x</sub> Master - θ <sub>z</sub> Master <b>x</b> (Y <sub>Master</sub> - Y <sub>Nodo</sub> ) |
| U <sub>y</sub>            | U <sub>yMaster</sub> + θ <sub>zMaster</sub> x (X <sub>Master</sub> - X <sub>Nodo</sub> )          |
| Uz                        | UzNodo                                                                                            |

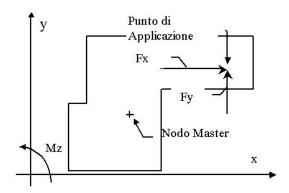
Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


Data: Novembre 2023



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"


PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| $\theta_{X}$ | $	heta_{xNodo}$ |
|--------------|-----------------|
| $\Theta_{y}$ | $	heta_{yNodo}$ |
| $\theta_{z}$ | θzMaster        |



Seguendo l'ipotesi di piano infinitamente rigido le azioni agenti nel piano del solaio vengono trasformate dal codice di calcolo in azioni agenti nel cosiddetto nodo master secondo le trasformazioni seguenti:

- $F_{xMaster} = F_{xNodo}$
- $F_{vMaster} = F_{vNodo}$
- $M_{zMaster} = M_{zNodo} F_{xNodo} (y_{App} y_{Master}) + F_{yNodo} (x_{App} x_{Master})$



## 2.12 Aree di carico

Un'area di carico è definita da una superfice contornata da travi di bordo ed i carichi superficiali su essa agenti vengono riportati dal programma sulle travi perimetrali in ragione dell'area di influenza relativa ad ogni trave e della direzione di orditura della superficie.

È importante rilevare che la direzione di orditura viene assunta dal programma con riferimento al primo lato della superficie di carico e non con riferimento all'asse x globale della struttura.

In particolare ricordiamo che le aree di carico fungono esclusivamente da supporto per il calcolo dei carichi di tipo superficiale in quanto i carichi definiti tramite tali aree di carico in effetti vengono trasferiti (sotto forma di carichi lineari o carichi nodali concentrati nei nodi) sulle travi perimetrali che contornano l'area di carico stessa.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice:

REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 17 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

A seguire vengono riportati per ogni tipologia definita i carichi agenti nelle varie condizioni di carico. La dizione:

Globale indica che il carico è definito nel sistema di riferimento globale della struttura.

Globale Proiettato indica che il carico è definito nel sistema di riferimento globale della struttura ma il valore viene computato

in proiezione.

Locale indica che il carico è definito nel sistema di riferimento locale della superficie di carico.

#### 2.13 Condizioni e combinazioni di carico

Le condizioni di carico dinamiche sono assimilate dal software ad una condizione di carico distinta per ogni direzione di ingresso del sisma. Pertanto qualora agiscano sulla struttura n condizioni di carico statiche e il progettista abbia supposto che la struttura venga sollecitata da un sisma entrante in m direzioni, la struttura stessa viene considerata del programma come soggetta ad n+m condizioni di carico.

Le combinazioni di carico, definite dal progettista, combinano fra loro le n+m condizioni di carico ognuna partecipante alla combinazione i-esima secondo i fattori di partecipazione definiti.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Allegato Z - Pag. 18 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 3 TEST DI VALIDAZIONE DEL SOFTWARE

Documento relativo a: Affidabilità del Codice di calcolo WinStrand

Ditta produttrice: En.Ex.Sys. s.r.l. - Via Tizzano 46/2 - Casalecchio di Reno (Bologna)

Campo di applicazione: analisi statica e dinamica di strutture in campo elastico lineare.

Il cap. 10 del Decreto del Ministero Infrastrutture e Trasporti del 14 Gennaio 2008 fornisce le istruzioni relative alla Redazione dei progetti strutturali esecutivi e delle relazioni di calcolo, cui il progettista delle strutture deve attenersi nella redazione degli elaborati progettuali.

Il punto 10.2 Analisi e verifiche svolte con l'ausilio di codici di calcolo specifica: "Qualora l'analisi strutturale e le relative verifiche siano condotte con l'ausilio di codici di calcolo automatico, il progettista dovrà controllare l'affidabilità dei codici utilizzati e verificare l'attendibilità dei risultati ottenuti, curando nel contempo che la presentazione dei risultati stessi sia tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità."

Nella fase di stesura della relazione di calcolo, utilizzando i tabulati provenienti da codici di calcolo, è demandato al progettista il compito di analisi preliminare della documentazione:

Il progettista dovrà esaminare preliminarmente la documentazione a corredo del software per valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. La documentazione, che sarà fornita dal produttore o dal distributore del software, dovrà contenere una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonchè casi prova interamente risolti e commentati, per i quali dovranno essere forniti i file di input necessari a riprodurre l'elaborazione.

Il presente documento costituisce assieme alle stampe degli esempi documento di validazione dei software prodotti dalla En.Ex.Sys srl.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembre 2023 Allegato Z - Pag. 19 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 4 BENCHMARK

Il controllo della affidabilità delle analisi numeriche è stato condotto su una serie di esempi di letteratura la cui soluzione sia esprimibile in forma chiusa, allo scopo di verificare l'affidabilità del software.

Gli esempi condotti, corredati della fonte di riferimento, dei risultati numerici e dei file dati permettono la riproduzione integrale degli stessi da parte degli utenti.

Test 001: Frequenze naturali di vibrazione di una trave appoggiata

Test 002: Frequenze naturali di vibrazione di una trave a mensola

Test 003: Frequenza naturale di vibrazione di un oscillatore semplice

Test 004: Trave piana con estremi incastrati

• Test 005: Sistema piano di aste sospese

Test 006: Stato tensionale di una trave inflessa

Test 007: Stato tensionale di una trave inflessa

Test 008: Sistema piano di aste sospese

Test 009: Trave a mensola soggetta a momento torcente concentrato

Test 010: Telaio piano

Test 011: Trave reticolare piana

Test 012: Controllo dell'analisi condotta considerando il comportamento monolatero degli

elementi biella - trave

Test 013: Aste piane e carico termico

Test 014: Flessione in una piastra circolare

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 20 di 51

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.1 Test 001 - Frequenze naturali di vibrazione di una trave appoggiata

- Fonte: Ray, W. Clough, Joseph Penzien Dynamics of Structures; Mc Graw-Hill Book Company, cap. 18
- Tipi di analisi: dinamica modale
- Descrizione schema statico: trave a sezione costante isostaticamente vincolata con due appoggi semplici soggetta al solo peso proprio.

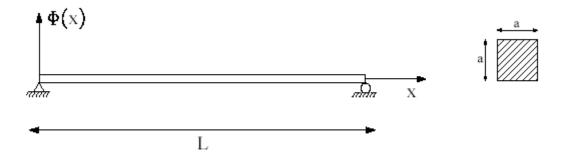



Figura 1-Schema statico

Obiettivo: determinare i primi tre modi di vibrare.

- Dati:
  - E = 2100000 [kg/cm<sup>2</sup>]
  - a = 30 [cm]
  - L = 10 [m]
  - $P_p = 706.5 \text{ [kg/m]}$
- Modello: La trave reale viene modellata con 20 elementi finiti di uguale lunghezza. I nodi di estremità vengono vincolati in modo da lascire libera solo la rotazione Y. Per tutti i nodi restanti si lascia libera la rotazione Y e le traslazioni nel piano XZ.
- File dati: Test 001

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 21 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

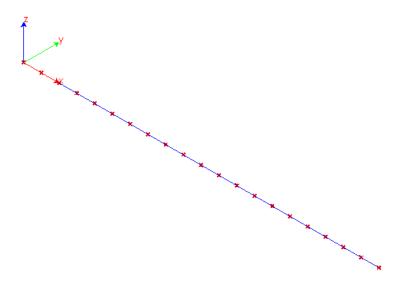



Figura 2-Modello

#### Analisi dei risultati

|                        | Soluzione teorica | WinStrand | rapporto |
|------------------------|-------------------|-----------|----------|
| ω <sub>1</sub> [rad/s] | 43.79             | 43.74     | 0.999    |
| ω <sub>2</sub> [rad/s] | 175.16            | 174.34    | 0.995    |
| ω <sub>3</sub> [rad/s] | 394.11            | 389.96    | 0.990    |

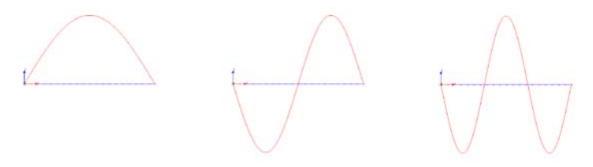



Figura 3-Prime tre forme modali

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 22 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.2 Test 002 - Frequenze naturali di vibrazione di una trave a mensola

- Fonte: Ray, W. Clough, Joseph Penzien Dynamics of Structures; Mc Graw-Hill Book Company, cap. 1
- Tipi di analisi: dinamica modale
- Descrizione schema statico: trave a sezione costante con un estremo incastrato e l'altro libero soggetta al solo peso proprio.

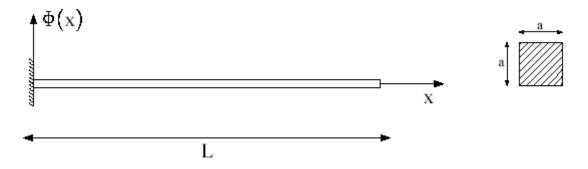




Figura 4-Schema statico

Obiettivo: determinare i primi tre modi di vibrare.

- Dati:
  - $\circ$  E = 2100000 [kg/cm<sup>2</sup>]
  - o a = 30 [cm]
  - $\circ$  L = 10 [m]
  - $\circ$  P<sub>p</sub> = 706.5 [kg/m]
- Modello: La trave reale viene modellata con 20 elementi finiti di uguale lunghezza. Il primo nodo di estremità viene vincolato completamente in modo da bloccare tutti i gradi di libertà. Per tutti i nodi restanti si lascia libera la rotazione Y e le traslazioni nel piano XZ.
- File dati: <u>Test 002</u>



Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 23 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Analisi dei risultati

|                        | Soluzione teorica | WinStrand | rapporto |
|------------------------|-------------------|-----------|----------|
| ω <sub>1</sub> [rad/s] | 15.60             | 15.57     | 0.998    |
| $\omega_2$ [rad/s]     | 97.76             | 97.00     | 0.992    |
| ω <sub>3</sub> [rad/s] | 273.76            | 269.52    | 0.985    |

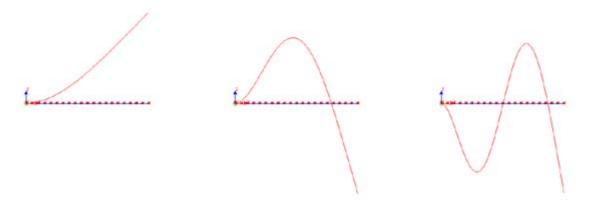



Figura 6-Prime tre forme modali

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Allegato Z - Pag. 24 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.3 Test 003 - Frequenza naturale di vibrazione di un oscillatore semplice

- Fonte: W. T. Thomson Vibrazioni Meccaniche Teoria ed applicazioni; Tamburini editore Milano
- Tipi di analisi: dinamica modale
- Descrizione schema statico: sistema dinamico ad un solo grado di libertà formato da una molla con un estremo vincolato connessa nell'altro estremo ad un massa. La molla è considerata priva di massa e con rigidezza K.

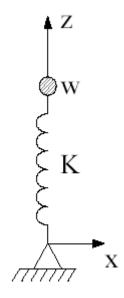



Figura 7-Schema statico

Obiettivo: determinare il periodo proprio del sistema.

- Dati:
  - $\circ$  K = 857.18 [kg/m]
  - $\circ$  w = 1.13 [kg] (2.5 [lb])
  - o  $g = 9.81 [m/sec^2]$
- Modello: Per simulare la molla si è impiegato un elemento pilastro (in direzione Z) con rigidezza assiale EA/L pari a quella della molla. La lunghezza L della molla è arbitraria. Il primo nodo di estremità viene vincolato completamente in modo da bloccare tutti i gradi di libertà. L'estremo opposto ha un solo grado di libertà libero nella direzione di traslazione Z. La massa è modellata con una forza concentrata Pz in testa al pilastro pari a w.
- File dati: <u>Test 003</u>

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REI

REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 25 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Figura 8-Modello

#### Analisi dei risultati

|                        | Soluzione teorica | WinStrand | rapporto |
|------------------------|-------------------|-----------|----------|
| ω <sub>1</sub> [rad/s] | 86.085            | 86.120    | 1.0000   |

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 26 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# Test 004 - Trave piana con estremi incastrati

- Fonte: Timoshenko Strength of Material, Part I, Elementary Theory and Problems, pag. 26, problem 10
- Tipi di analisi: statica lineare
- Descrizione schema statico: asta prismatica di sezione costante incastrata agli estremi e soggetta alle azioni assiali F1 ed F<sub>2</sub> in corrispondenza di due sezioni intermedie.

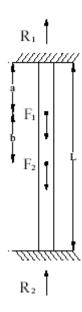



Figura 9-Schema statico

Obiettivo: determinare le reazioni vincolari R1 ed R2 trascurando il peso delle aste.

- Dati:
  - $E = 2068428 \text{ [kg/cm}^2\text{]}$
  - L = 24.5 [m]
  - a = b = 0.3 L = 7.62 [m]
  - $\circ$  A = 100 [cm<sup>2</sup>]
  - o  $F_1 = 2.0 [t]$
  - $F_2 = 0.45349$  [t]
- Modello: I nodi vengono inseriti in corrispondenza delle estremità vincolate e dei due punti di applicazione delle forze F<sub>1</sub> ed F<sub>2</sub>.
- File dati: Test 004

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Novembre 2023 Data:

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

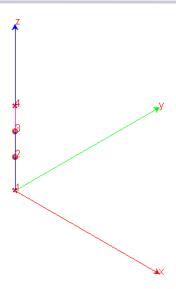



Figura 10-Modello

#### Analisi dei risultati

|                     | Soluzione teorica | WinStrand | rapporto |
|---------------------|-------------------|-----------|----------|
| R <sub>1</sub> [kg] | 408.23            | 408.23    | 1.000    |
| R <sub>2</sub> [kg] | 272.15            | 272.15    | 1.000    |

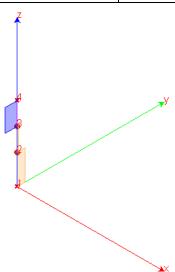



Figura 11- Diagramma sforzo normale nelle aste: asta 1-2 compressa, asta 3-4 tesa

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 28 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.5 Test 005 - Sistema piano di aste sospese

- Fonte: Timoshenko Strength of Material, Part I, Elementary Theory and Problems, pag. 10, problem 2
- Tipi di analisi: statica lineare
- Descrizione schema statico: struttura simmetrica costituita da due aste inclinate connesse sull'asse di simmetria e vincolate sulle due estremità rimanenti (vedi Fig. 1). Le aste sono di acciaio con lunghezza L e sezione trasversale pari ad A. Il carico concentrato F agisce sulla sezione di simmetria.

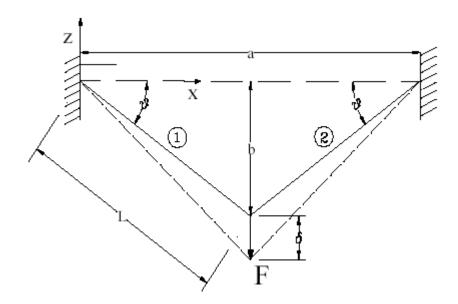



Figura 12-Schema statico

Obiettivo: determinare il valore della tensione  $\sigma$  in ciascuna delle aste e lo spostamento  $\delta$  della sezione di simmetria trascurando il peso delle aste.

- Dati:
  - o E = 2068428 [kg/cm<sup>2</sup>]
  - $\circ$  L = 457.20 [cm]
  - $\theta = 30$  [°]
  - $\circ$  A = 3.23 [cm<sup>2</sup>]
  - $\circ$  F = 2267 [kg]
- Modello: La distanza tra i nodi di estremità è calcolata pari ad a= 2L cos θ. La freccia con cui posizionare il nodo intermedio vale b= L sin θ.
- File dati: <u>Test 005</u>

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 29 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

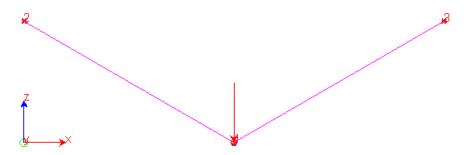



Figura 13-Modello

#### Analisi dei risultati

|                         | Soluzione teorica | WinStrand | rapporto |
|-------------------------|-------------------|-----------|----------|
| σ [kg/cm <sup>2</sup> ] | 689.5             | 701.86    | 1.018    |
| δ [mm]                  | 3.048             | 3.103     | 1.018    |

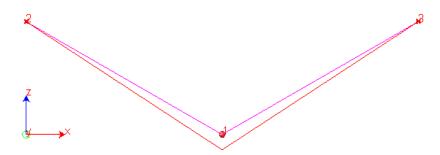



Figura 14-Deformata

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 30 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 4.6 Test 006 - Stato tensionale di una trave inflessa

- Fonte: Timoshenko Strength of Material, Part I, Elementary Theory and Problems, pag. 98, problem 4
- Tipi di analisi: statica lineare
- Descrizione schema statico: trave isostatica di luce L con due sbalzi di luce a soggetti al carico distribuito di intensità w. La
  trave ha sezione a doppio T con sezione trasversale pari ad A.

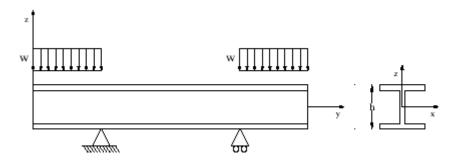



Figura 15-Schema statico

- Obiettivo: determinare nella sezione di mezzeria il valore della tensione σ<sub>max</sub> e dello spostamento verticale δ trascurando il peso delle aste.
- Dati:
  - $\circ$  E = 2068428 [kg/cm<sup>2</sup>]
  - $\circ$  L = 609.6 [cm]
  - $\circ$  a = 304.8 [cm]
  - o h = 76.2 [cm]
  - o  $A = 326.77 \text{ [cm}^2\text{]}$
  - o J = 328488 [cm<sup>4</sup>]
  - $\circ$  w = 14.88 [t/m]
- Modello: I due nodi di estremità e quello in posizione mediana sono liberi. Il primo nodo nella posizone del primo vincolo ha un solo grado di libertà libero (rotazione Y) mentre il nodo in corrispondenza del secondo vincolo ha due gradi di libertà (rotazione Y e traslazione X).

File dati: <u>Test 006</u>

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 31 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto



Figura 16-Modello

#### Analisi dei risultati

|                             | Soluzione teorica | WinStrand | rapporto |
|-----------------------------|-------------------|-----------|----------|
| $\sigma$ [cm <sup>2</sup> ] | 786               | 802       | 1.020    |
| δ [mm]                      | 4.620             | 4.725     | 1.023    |

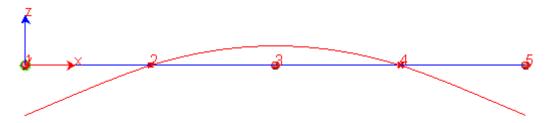



Figura 17-Deformata

**Documento:** Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto REL\_6\_4

Codice:

Data: Novembre 2023 Allegato Z - Pag. 32 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

## 4.7 Test 007 - Stato tensionale di una trave inflessa

- Fonte: Cremonesi Manuale Ingegneria Civile, ESAC, SEZ. I, pag. 82
- Tipi di analisi: statica lineare
- Descrizione schema statico: trave con incastro sul primo estremo e carrello sull'estremo opposto. La trave con sezione trasversale circolare con diametro d e luce L è soggetta al carico uniformemente distribuito q su tutta la campata.

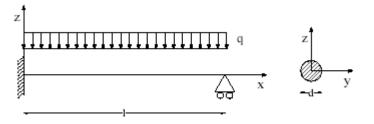



Figura 18-Schema statico

Obiettivo: determinare nella sezione incastrata il valore del momento flettente M<sub>a</sub> e nella sezione opposta il valore del taglio V<sub>b</sub>. Si trascura il peso delle aste.

- Dati:
- E = 2068428 [kg/cm<sup>2</sup>]
- L = 50.8 [cm]
- d = 3.81 [cm]
- q = 1.784 [t/m]
- Modello: La trave viene modellata con due aste in serie. Il nodo sulla prima estremità viene incastrato (zero gradi di libertà),
   quello in posizione mediana è totalmente libero, il nodo sull'estremità opposta ha due gradi di libertà liberi(rotazione Y e traslazione X).
- File dati: Test 007

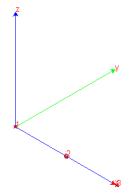



Figura 19-Modello

#### Analisi dei risultati

| Soluzione teorica | WinStrand | rapporto |
|-------------------|-----------|----------|

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 33 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| M <sub>a</sub> [tm] | 0.057  | 0.057  | 1.000 |
|---------------------|--------|--------|-------|
| Vb [kg]             | 340.19 | 340.17 | 1.000 |

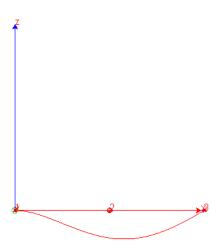



Figura 20-Deformata

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 34 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.8 Test 008 - Sistema piano di aste sospese

- Fonte: W. Nash, Strength of Material, pag. 28, prob. 2.3
- Tipi di analisi: statica lineare
- Descrizione schema statico: una barra orizzontale infinitamente rigida, caricata con due forze concentrate F, è sospesa in
  tre punti con le aste verticali descritte in Fig. 1. Le due aste più esterne sono in acciaio mentre quella intermedia è in rame.
   Nel punto di sospensione le tre aste sono incastrate.

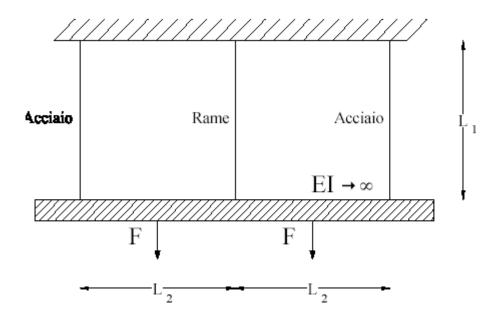



Figura 21-Schema statico

Obiettivo: determinare lo sforzo assiale in ciascuna delle tre aste. Si trascura il peso delle aste.

- Dati:
  - $\circ$  E<sub>acc</sub> = 2068428 [kg/cm<sup>2</sup>]
  - o  $E_{rame} = 1172110 [kg/cm^2]$
  - o  $L_1 = 213.36$  [cm]
  - $\circ$  L<sub>2</sub> = 304.80 [cm]
  - $\circ$  A<sub>acc</sub> = 3.2258 [cm<sup>2</sup>]
  - o  $A_{rame} = 9.6774 \text{ [cm}^2\text{]}$
  - $\circ$  F = 5.44 [t]
- Modello: Il sistema simmetrico è descritto con 8 nodi di cui 3 nei punti di sospensione delle aste verticali, 3 nelle intersezioni delle aste verticali con la barra orizzontale e 2 nei punti di applicazione dei carichi F. Tra i suddetti nodi si connettono 7 aste con le relative caratteristiche. I tre nodi di sospensione sono completamente vincolati (zero gradi di libertà). Tutti gli altri nodi posso spostarsi nel piano X-Z e ruotare intorno ad Y. La barra infinitamente rigida è simulata assegnando un modulo elastico di quattro ordini di grandezza maggiore rispetto agli altri.

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4
Data: Novembre 2023

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

File dati: Test 008

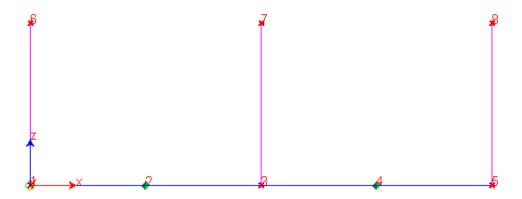



Figura 22-Modello

#### Analisi dei risultati

|                                    | Soluzione teorica | WinStrand | rapporto |
|------------------------------------|-------------------|-----------|----------|
| R <sub>6</sub> =R <sub>8</sub> [t] | 2.94              | 2.99      | 1.017    |
| R <sub>7</sub> [t]                 | 4.98              | 4.90      | 0.984    |

R<sub>6</sub>, R<sub>7</sub> ed R<sub>8</sub> sono le reazioni verticali nei rispettivi nodi. Tali valori eguagliano gli sforzi normali nelle corrispondenti aste.

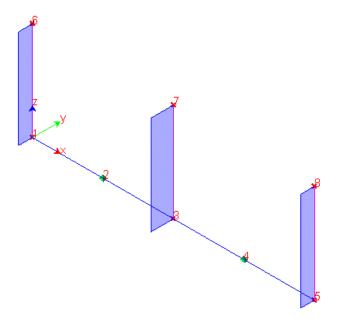



Figura 23-Diagrammi degli sforzi normali

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto REL\_6\_4

Codice:

Data: Novembre 2023 Allegato Z - Pag. 36 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.9 Test 009 - Trave a mensola soggetta a momento torcente concentrato

- Fonte: NAFEMS, Background to Benchmarks, 1993, test LE5
- Tipi di analisi: statica lineare
- Descrizione schema statico: trave con incastro sul primo estremo e libera sull'estremo opposto. La trave con sezione
  trasversale a Z di spessore t e luce L è soggetta in corrispondenza della sezione sull'estremità libera ad una coppia torcente
  generato dalla presenza di due forze di taglio S concentrate sulle ali.

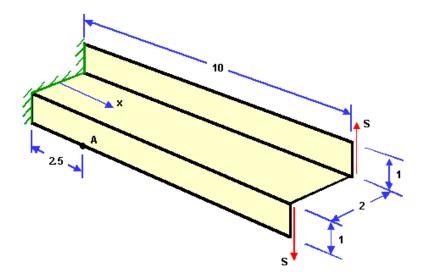



Figura 24-Schema statico

- Obiettivo: determinare nel punto A la tensione normale  $\sigma_x$  nella sezione trasversale condotta in x=2,5 m dall'incastro. Si trascura il peso della trave.
- Dati:
  - $\circ$  E = 2100000 [kg/cm<sup>2</sup>]
  - $\circ$  v = 0.3
  - L = 10 [m]
  - $\circ$  t = 0.1 [m]
  - $\circ$  S = 0.6 [MN]
- Modello: La trave viene modellata con una mesh uniforme di 24 elementi piani connessi a 36 nodi. I nodi per x=0 sono tutti incastrati (zero gradi di libertà) mentre i rimanenti risultano totalmente liberi.
- File dati: <u>Test 009</u>

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 37 di 51

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

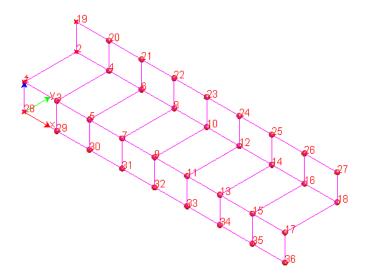



Figura 25-Modello

#### Analisi dei risultati

|          | Soluzione teorica | WinStrand | rapporto |
|----------|-------------------|-----------|----------|
| σx [MPa] | 107.9             | 103.8     | 0,96     |

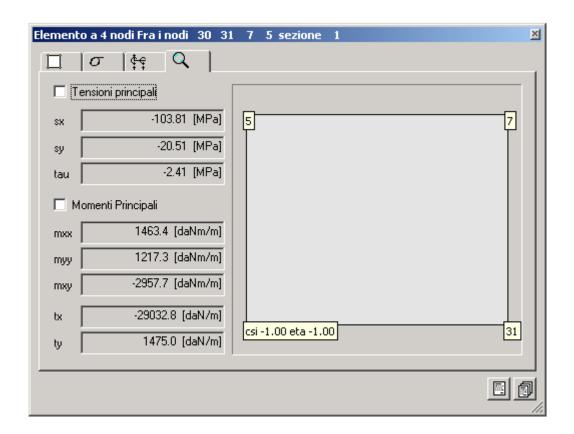



Figura 26-Valore puntuale nel nodo 30

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 38 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.10 Test 010 - Telaio piano

- Fonte: Timoshenko, Strength of Material, Part I, Elementary Theory and Problems, pag. 188
- Tipi di analisi: statica lineare
- Descrizione schema statico: Portale incastrato alla base dei ritti e caricato nella mezzeria del traverso con un carico concentrato P. Lo schema è staticamente indeterminato.

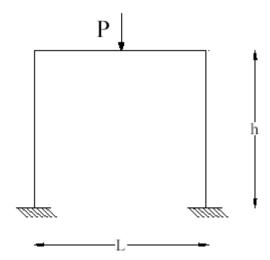



Figura 27-Schema statico

Obiettivo: determinare le reazioni verticali alla base dei ritti. Si trascura il peso delle aste.

- Dati:
  - $E = 2068428 \text{ [kg/cm}^2\text{]}$
  - $\circ$  L = 3.04 [m]
  - h = 2.54 [m]
  - $\circ$  A<sub>rit</sub> = 25.80 [cm<sup>2</sup>]
  - $\circ$  A<sub>trav</sub> = 51.61 [cm<sup>2</sup>]
  - $\circ$  P = 0.45 [t]
- Modello: I due nodi alla base del portale vengono vincolati in modo da lasciare libera solo la rotazione Z. I nodi rimanenti sono completamente liberi. Il carico P viene applicato al nodo inserito in mezzeria del traverso.
- File dati: <u>Test 010</u>

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 39 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

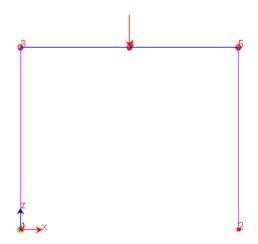



Figura 28-Modello

#### Analisi dei risultati

|                | Soluzione teorica | WinStrand | rapporto |
|----------------|-------------------|-----------|----------|
| $R_1 = R_2[t]$ | 0.225             | 0.225     | 1.000    |

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 40 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.11 Test 011 - Trave reticolare piana

- Fonte: Timoshenko, Strength of Material, Part I, Elementary Theory and Problems, pag. 188
- Tipi di analisi: statica lineare
- Descrizione schema statico: La trave reticolare piana è formata da 9 aste di legno ed è vincolata esternamente con una cerniera ed un carrello. I vincoli interni tra le aste sono cerniere. La struttura è soggetta ai carichi esterni P<sub>z</sub> e P<sub>x</sub>.

Obiettivo: determinare gli spostamenti nodali associati alla configurazione di carico assegnata. Si trascura il peso delle aste.

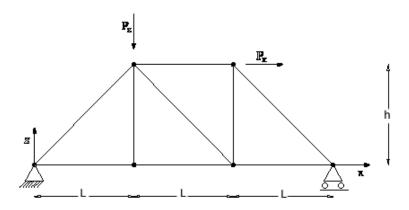



Figura 29-Schema statico

- Dati:
- E = 141900 [kg/cm<sup>2</sup>]
- L = 6.096 [m]
- h = 4.572 [m]
- A = 929.03 [cm<sup>2</sup>]
- P<sub>x</sub> = 8.90 [t]
- $P_z = 4.45$  [t]
- Modello: Il nodo 1 ha un solo grado di libertà libero (rotazione Y). Il nodo 4 ha due gradi di libertà liberi (rotazione Y e traslazione X). I nodi rimanenti sono vincolati a spostarsi nel piano X-Z (Ux, Uz, Ry liberi).
- File dati: Test 011

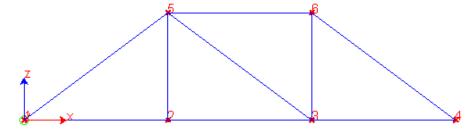



Figura 30-Modello

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 41 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

#### Analisi dei risultati

## Spostamenti Ux

| Ux nodo | Soluzione teorica | WinStrand | rapporto |
|---------|-------------------|-----------|----------|
| 1 [mm]  | 0.00              | 0.00      | 1.000    |
| 2 [mm]  | 0.45              | 0.46      | 1.022    |
| 3 [mm]  | 0.90              | 0.91      | 1.011    |
| 4 [mm]  | 1.12              | 1.14      | 1.018    |
| 5 [mm]  | 0.91              | 0.92      | 1.011    |
| 6 [mm]  | 1.09              | 1.11      | 1.018    |

## Spostamenti Uz

| Uz nodo | Soluzione teorica | WinStrand | rapporto |
|---------|-------------------|-----------|----------|
| 1 [mm]  | 0.00              | 0.00      | 1.000    |
| 2 [mm]  | -1.33             | -1.35     | 1.015    |
| 3 [mm]  | -0.76             | -0.77     | 1.013    |
| 4 [mm]  | 0.00              | 0.00      | 1.000    |
| 5 [mm]  | -1.33             | -1.35     | 1.015    |
| 6 [mm]  | -0.63             | -0.64     | 1.016    |

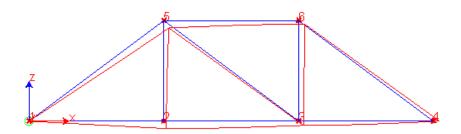



Figura 31-Deformata

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

 Codice:
 REL\_6\_4

 Data:
 Novembre 2023

 Allegato Z - Pag. 42 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.12 Test 012 - Controllo dell'analisi condotta considerando il comportamento monolatero degli elementi biella - trave

- Fonte: Test interno EnExSys
- Tipi di analisi: statica non lineare (effetti dovuti al comportamento monolatero delle aste)
- Descrizione schema statico: Trave reticolare tipo Monier vincolata isostaticamente esternamente e soggetta a 10 kN per ogni nodo del corrente superiore.

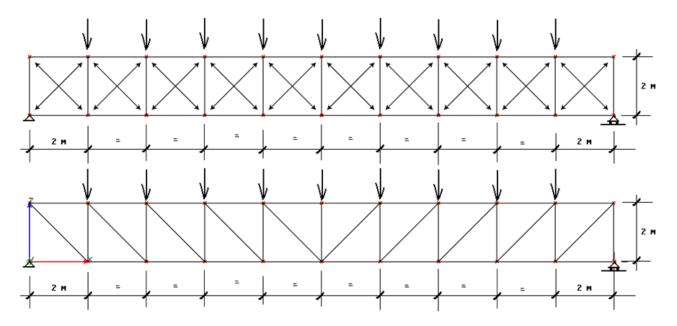



Figura 32-Schema statico

Obiettivo: Confrontare i risultati ottenuti nei due schemi statici: controllare che i risultati ottenuti in una struttura staticamente determinata ed in una iperstatica coincidano.

- Dati:
  - $\circ$  E = 2100000 [kg/cm<sup>2</sup>]
  - Area correnti estradosso = 45.33 [cm²]
  - Area correnti intradosso = 45.33 [cm²]
  - Area diagonali = 38.85 [cm²]
  - Area montanti = 38.85 [cm²]
  - Carico nodali applicato = 10 [kN] nodo per un totale di 90 [kN]
- Modello: La trave reale viene modellata con elementi finiti tipo biella. Le travi sono vincolate a muoversi nel piano x-z globale e sono esternamente isostatiche (nodo in basso a sinistra vincolato alla traslazione globalmente e nodo in basso a destra libero di spostrsi solo in direzione X).
- File dati: Test 012

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 43 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

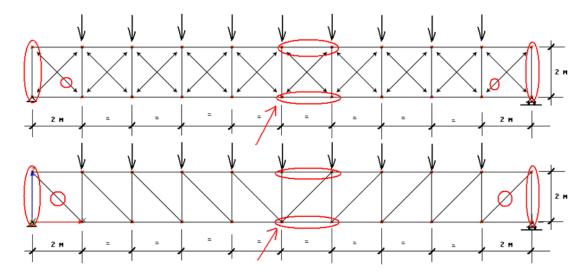



Figura 33-Modello

#### Analisi dei risultati

- Soluzione teorica (semplice modello isostatico):
- Reazione vincolare, sforzo nel primo montante: (9 x 10kN / 2) = 45 [kN]
- Sforzo assiale in un corrente in mezzeria: (10 x 45 8 x 10 6 x 10 4 x 10 2 x 10) / 2 = 125 [kN]
- Sforzo nel primo diagonale: 45/cos(450) = 63.639 [kN]

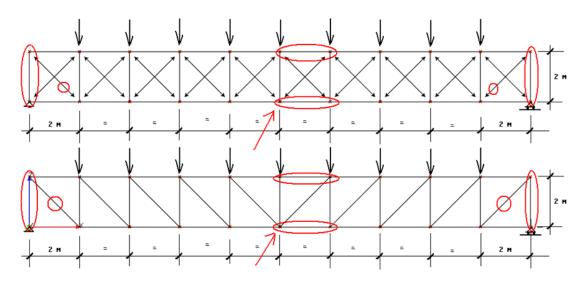



Figura 34-Aste analizzate

| Sforzo assiale                                 | Soluzione teorica | WinStrand          | WinStrand           | rapporto |
|------------------------------------------------|-------------------|--------------------|---------------------|----------|
|                                                |                   | Modello Isostatico | Modello Iperstatico |          |
| Nell'asta centrale del corrente superiore [kN] | 125               | 125                | 125                 | 1        |
| Nell'asta centrale del corrente inferiore [kN] | 125               | 125                | 125                 | 1        |
| Nel primo montante a sinistra [kN]             | 45                | 45                 | 45                  | 1        |
| Nel primo montante a destra [kN]               | 45                | 45                 | 45                  | 1        |
| Nel primo diagonale a sinistra [kN]            | 63.639            | 63.639             | 63.639              | 1        |

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 44 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

| Nel primo diagonale a destra [kN]  | 63.639 | 63.639 | 63.639 | 1 |
|------------------------------------|--------|--------|--------|---|
| Spostamento del nodo centrale [mm] | -6.786 | -6.786 | -6.786 | 1 |

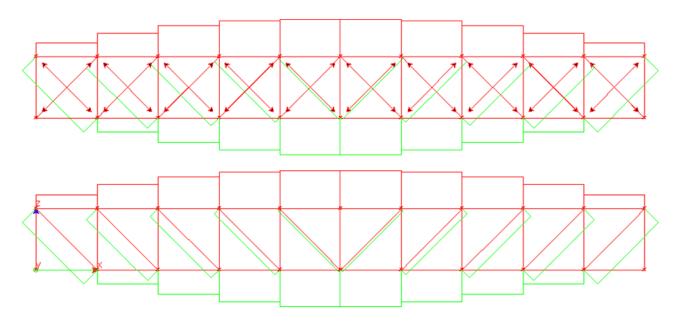



Figura 35-Diagramma dello sforzo assiale e deformata

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 45 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.13 Test 013 - Aste piane e carico termico

- Fonte: R. D. Cook, D. S. Malkus, M.E. Plesha, Concepts and applications of finite element analysis, III ed., J. Wiley & Sons, pag. 57
- Tipi di analisi: statica lineare
- Descrizione schema statico: Tre aste uguali in serie formano un sistema incastrato alle estremità con luce pari a 3L. Solo le prime due aste sono soggette ad una variazione termica uniforme DT.

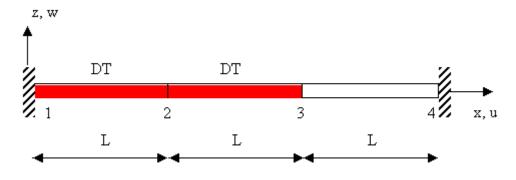



Figura 36-Schema statico

Obiettivo: determinare lo spostamento orizzontale della sezione 3 e lo sforzo assiale N<sub>12</sub>, N<sub>23</sub>, N<sub>34</sub> in ciascuna delle tre aste.

- Dati:
  - $\circ$  E = 2100000 [kg/cm<sup>2</sup>]
  - $\circ$  v = 0.33
  - o L = 100 [cm]
  - $\circ$  A = 25 [cm<sup>2</sup>]
  - $\alpha = 0.000012 [1/^{\circ}C]$
  - o DT = 833.333 [°C]
- Modello: I nodi 1 e 4 sono incastrati (zero gradi di libertà) mentre gli altri intermedi risultano totalmente liberi. Il carico termico
  è applicato alle aste 1-2 e 2-3.
- File dati: Test 013

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 46 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

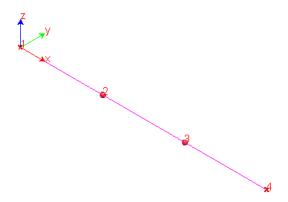



Figura 37-Modello

#### Analisi dei risultati

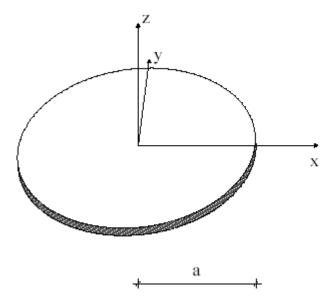
| Sforzo assiale                                          | Soluzione teorica | WinStrand | rapporto |
|---------------------------------------------------------|-------------------|-----------|----------|
| u₃ [cm]                                                 | 2/3               | 0.67      | 1.000    |
| N <sub>12</sub> , N <sub>23</sub> , N <sub>34</sub> [t] | 350.0             | 350.0     | 1.000    |



Figura 38-Diagramma sforzo normale

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4


Data: Novembre 2023 Allegato Z - Pag. 47 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

# 4.14 Test 014 - Flessione in una piastra circolare

- Fonte: Cremonesi Manuale Ingegneria Civile, ESAC, SEZ. II, pag. 114
- Tipi di analisi: statica lineare
- Descrizione schema statico: Piastra circolare sottile di raggio a e spessore t soggetta a diverse condizioni di vincolo sul contorno e di carico.



- Obiettivo: determinare l'abbassamento w del centro della piastra, trascurando il peso della piastra, nei sequenti casi:
  - a) carico uniformemente distribuito go su tutta la piastra e contorno incastrato;
  - b) carico concentrato P applicato nel centro della piastra e contorno incastrato;
  - c) carico uniformemente distribuito qo su tutta la piastra e contorno appoggiato.
- Dati:
  - $\circ$  E = 2100000 [kg/cm<sup>2</sup>]
  - o n = 0.3
  - o a = 1.50 [m]
  - o t = 3 [cm]
  - o  $q_0 = 10 [t/m^2]$
  - o P = 2 [t]
- Modello: La piastra viene modellata nei tre casi sempre nello stesso modo e cioè con una mesh di elementi piani a 4 nodi.
   Nella direzione radiale sono presenti 8 intervalli mentre lungo il perimetro sono presenti 20 intervalli per un totale di 150 elementi finiti.
- File dati: <u>Test 014 A</u>, <u>Test 014 B</u>, <u>Test 014 C</u>

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 48 di 51



PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

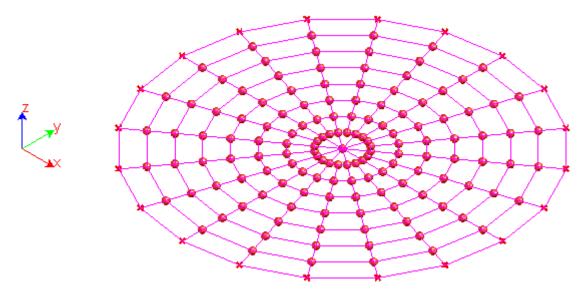



Figura 39-Modello

Caso A - carico uniformemente distribuito qo su tutta la piastra e contorno incastrato

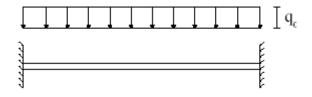



Figura 40-Schema del caso A

## Analisi dei risultati

| Soluzione teorica | WinStrand | rapporto |       |
|-------------------|-----------|----------|-------|
| w [mm]            | 15.20     | 15.25    | 1.003 |

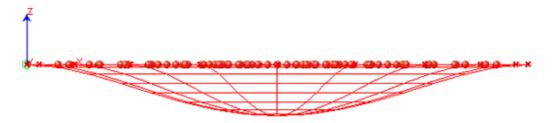



Figura 41-Deformata Caso A

Caso B - carico concentrato P applicato nel centro della piastra e contorno incastrato

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 49 di 51

"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

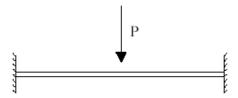



Figura 42-Schema del Caso B

#### Analisi dei risultati

|        | Soluzione teorica | WinStrand | rapporto |
|--------|-------------------|-----------|----------|
| w [mm] | 1.725             | 1.722     | 0.998    |



Figura 43-Deformata del Caso B

Caso C - carico uniformemente distribuito qo su tutta la piastra e contorno appoggiato

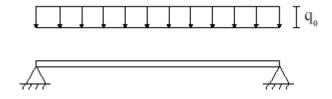



Figura 44-Schema del Caso C

## Analisi dei risultati

| Soluzione teorica | WinStrand | rapporto |       |
|-------------------|-----------|----------|-------|
| w [mm]            | 61.96     | 61.88    | 0.999 |

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto REL\_6\_4

Codice:

Data: Novembre 2023 Allegato Z - Pag. 50 di 51



"Ciclovia del Sole: tratto 3 attraversamento dei centri abitati di Crevalcore, San Giovanni in Persiceto, Sala Bolognese - tratto 4: Casalecchio- Marzabotto"

PROGETTO DEFINITIVO - Relazione tecnica delle strutture metalliche Allegato 1 - Passerella ciclopedonale Fiume Reno - Sasso Marconi/Marzabotto

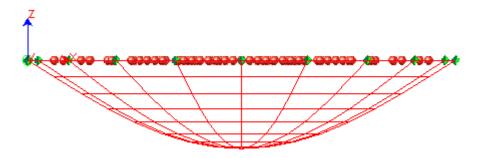



Figura 45-Deformata del Caso C

Documento: Relazione tecnica delle strutture metalliche - Passerella ciclopedonale Fiume Reno - Allegato 1 - Sasso Marconi/Marzabotto

Codice: REL\_6\_4

Data: Novembre 2023 Allegato Z - Pag. 51 di 51