

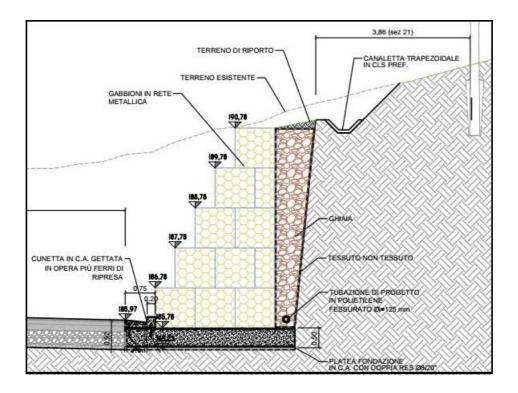
AREA SERVIZI TERRITORIALI METROPOLITANI

STRADA: SP36 "VAL DI ZENA" Settore LAVORO: Strade e Sicurezza LAVORI DI RIPRISTINO DEFINITIVO DELLA SEDE STRADALE E DELLE SCARPATE DI MONTE E DI VALLE DELLA SP36 VAL DI ZENA DAL KM 11+820 AL KM 12+050 **ELABORATO:** PROGETTO DI **FATTIBILITÀ** RELAZIONE DI CALCOLO OPERE STRUTTURALI TECNICO-ECONOMICA PROGETTAZIONE GENERALE GEOLOGIA: EGNERI PRO E SPECIALISTICA: Dott. Geol. CLAUDIO CINTI GEOTEA S.r.L. CARLO BAIETT ARCHEOLOGIA: Dott.ssa ROSSANA GABRIELLI Dott. FRANCESCO DALL'ARMI Ing. CARLO BAIETTI Leonardo S.r.I. COLLABORATORE: Ing. GIANPIERO BRUNO STICCHI RESPONSABILE UNICO DEL PROCEDIMENTO: ING. LUCIA MOLICA-FRANCO SCALA: TAV./ELAB Nr. В MAGGIO 2025 Α **EMISSIONE** MODIFICA REV. DATA

QUESTO DISEGNO E LA RELATIVA INVENZIONE SONO DI PROPRIETA' DELL'AMMINISTRAZIONE NON NE E' CONSENTITO L'UTILIZZO SE NON SU ESPLICITA AUTORIZZAZIONE OGNI DIRITTO A TALE RIGUARDO E' ESPRESSAMENTE RISERVATO ED ESCLUSIVO

1. PREMESSA

La presente relazione ha per oggetto le verifiche strutturali delle opere di sostegno della scarpata di monte della sede stradale del tratto in variante alla SP36 – via Zena in località Trabucco nel Comune di Pianoro.


La viabilità in progetto è relativa ad una tratta di lunghezza pari a circa 230 metri in variante al sedime attuale coinvolto in movimenti franosi.

2. INTERVENTO DI PROGETTO

Il tratto di strada da realizzare a monte di quello esistente, attualmente interessato da fenomeni franosi, prevede lo sbancamento di un versante collinare con altezze di scavo fino a 5,00 mt.

A sostegno del rilevato è prevista l'esecuzione di una gabbionata con dimensioni alla base di 3,00 mt, altezza massima di 5,00 mt, altezza dei gabbioni di 1,00 mt, e profilo gradonato anteriore con rastremazione di 0,50 mt.

Alla base dei gabbioni è prevista una platea in c.a. dello spessore di 50 cm.

3. Considerazioni geotecniche

Come descritto nella relazione geologica redatta dal geol. C. Cinti nell'area affiorano diffusamente i terreni appartenenti al Membro delle Ganzole, definiti *Prevalenti arenarie grigie, beige se alterate, poco cementate, con matrice siltoso-argillosa e subordinati conglomerati, in strati da medi a banchi, alternate a peliti sabbiose grigie con stratificazione da sottile a spessa, a geometria tabulare e lenticolare. Verso l'alto aumentano le peliti. Stratificazione poco evidente per bioturbazione.*

L'area interessata dal dissesto è rappresentata da una parete subverticale generata dall'azione erosiva del torrente Zena, che pone in affioramento i terreni appartenenti alla Formazione di Monte Adone – Membro delle Ganzole.

L'assetto geologico-stratigrafico del comparto è costituito da una coltre superficiale di depositi limoso-sabbiosi, sovrastanti la locale formazione arenitica.

Da 0.00 a 4.00 m.

Coltre superficiale limoso- sabbiosa

Il peso di volume $\gamma_n = 18.3-20.0 \text{ kN/m}^3$

Per questa unità posso attribuirsi i seguenti parametri efficaci ottenuti da prova taglio in laboratorio: $\phi' = 30^{\circ}$ - 32.8° ed una coesione c' = 3.5 – 11.0 kPa.

La resistenza al taglio espressa in funzione della coesione non drenata si stima in c_u = 28-47 kPa, ma tale valore risulta scarsamente attendibile dato il carattere prevalentemente attritivo del sedimento.

Il modulo elastico attribuibile a questa unità è mediamente $E_v = 7.0-17.0 \text{ MPa}$

da 1.70 a 3.00 m. (S2) Ghiaie in matrice sabbiosa

aventi peso di volume $\gamma_n = 22.0-24.0 \text{ kN/m}^3$.

In termini di angolo di attrito interno possono attribuirsi valori ϕ = 40-42° kPa Il modulo elastico attribuibile a questa unità è E_y = 49 MPa

da 4.00 a >7.20 m.

Arenarie poco cementate

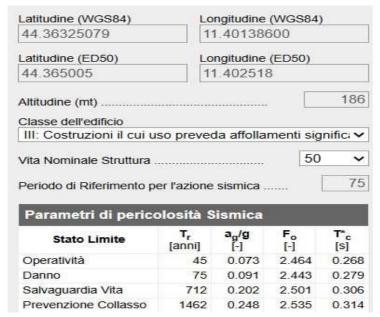
per questa formazione lapidea, dotata di debole cementazione, si stima un peso di volume γ_n = 23.0-24.0 kN/m³.

Da prova penetrometrica deriva un angolo di resistenza al taglio ϕ ' >40°.

I parametri ottenuti da prove di compressione uniassiale in laboratorio, su spezzone di carota, è risultato il seguente S_u = 2.99 MPa

Prove Point load su diversi spezzoni di carote prelevate consentono di definire un range di resistenze S_u = 1.24-2.13 MPa

Il modulo elastico attribuibile a questa unità è E_v = 50-68 MPa


Sulla base dei parametri Mohr-Coulomb ottenuti dalla caratterizzazione geomeccanica dell'ammasso roccioso, tramite il metodo di classificazione di Hoek-Brown, possono cautelativamente considerarsi: φ' =39°; c'=50 kPa

Si riportano di seguito i modelli schematici dei dati fisico-meccanici proposti per i diversi strati omogenei adottati nelle verifiche.

profe	ondità	ità litologia		c'	Cu	¥п	∦ sat	Ey
da	а		0	(kPa)	(kPa)	(kN/m³)	(kN/m³)	(MPa)
0.00	4.00	Coltre limoso-sabbiosa	30	3.5	-	18.5	20.0	7.0
4.00	>7.20	Formazione arenitica	39	50.0	-	23.0	24.0	50.0

4. SISMICA

Dal punto di vista sismico si riportano i parametri di pericolosità del sito di intervento:

Vita nominale: 50 anni

Classe d'uso: III - Cu = 1,5 Categoria topografica: T2

5. VERIFICHE

Si riportano di seguito i risultati dell'elaborazione di calcolo eseguita con la procedura Max 16 di Aztec Informatica.

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata Cmb Indice/Tipo combinazione S Sisma (H: componente orizzontale, V: componente verticale) FSsco Coeff, di sicurezza allo scorrimento FScom Coeff, di sicurezza a carico limite FSsta Coeff, di sicurezza a stabilità globale FSstro Coeff, di sicurezza a sifonamento FSun Coeff, di sicurezza a sifonamento FSun Coeff, di sicurezza a sollevamento

Cmb	Sismica	FS _{SCO}	FSRIB	FSQLIM	FSSTAB	FSHYD	FSUPL
1 - STR (A1-M1-R3)	72-3158	4,955		53.409			
2 - STR (A1-M1-R3)	H + V	2.808		44.157			
3 - STR (A1-M1-R3)	H-V	2.794		51.061			
4 - GEO (A2-M2-R2)		1100000000			2.937		
5 - GEO (A2-M2-R2)	H + V				2.896		
6 - GEO (A2-M2-R2)	H-V				2.981		
7 - EQU (A1-M1-R3)			6.410				
8 - EQU (A1-M1-R3)	H + V		3,515				
9 - EQU (A1-M1-R3)	H-V		2.622				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Resistenza allo scorrimento per attrito, espresso in [kg] Resistenza passiva terreno antistante, espresso in [kg]

Bpt Bps Bp Rt R T FS Resistenza passiva serreno antistante, espresso in [kg]
Resistenza passiva sperone, espresso in [kg]
Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kg]
Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kg]
Resistenza allo scorrimento (somma di 85a+Rpt+Rps+Rp), espresso in [kg]
Carico parallelo al piano di posa, espresso in [kg]
Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps.	Rp	Rt	R	T	FS
	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	
1 - STR (A1-M1-R3)	26309	0	0		-	26309	5309	4.955
2 - STR (A1-M1-R3) H + V	27353	0	0	- 2		27353	9741	2.808
3 - STR (A1-M1-R3) H - V	25339	0	0			25339	9070	2.794

Verifica a carico limite

Simbologia adottata

Indice combinazione Carico normale totale al piano di posa, espresso in [kg]

carico limite del terreno, espresso in [kg]

Portanza di progetto, espresso in [kg]
Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

nº	N	Qu	Od	FS
	[kg]	[kg]	[kg]	
1 - STR (A1-M1-R3)	32156	1717430	1226736	53,409
2 - STR (A1-M1-R3) H + V	34298	1514503	1262086	44.157
3 - STR (A1-M1-R3) H - V	30168	1540427	1283689	51.061

In allegato si riporta il fascicolo dei calcoli eseguiti con la procedura Max 16.

Pianoro, maggio 2025

IL PROGETTISTA (ing. Carlo Baietti)

GEGNERI PROL

INGEGNERE

LAUREA SPECIALISTICA Sezione: A

Cont Brien

ALLEGATO 1

1

FASCICOLO DEI CALCOLI

MAX 16 – Aztec Informatica

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2018 (D.M. 17 Gennaio 2018)
- Circolare C.S.LL.PP. 21/01/2019 n.7 Istruzioni per l'applicazione dell'Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018

Richiami teorici

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Se il muro è in calcestruzzo armato: Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

Se il muro è a gravità: Calcolo delle sollecitazioni sia del muro che della fondazione e verifica in diverse sezioni al ribaltamento, allo scorrimento ed allo schiacciamento.

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa, al di sotto del livello di falda va considerato il peso di volume efficace

$$\gamma' = \gamma_{sat} - \gamma_{w}$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_{w} è il peso specifico dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione esercitata dall'acqua.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

4

$$\epsilon' = \epsilon + \theta$$
 $\beta' = \beta + \theta$

dove $\theta = \text{arctg}(k_h/(1\pm k_v))$ essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h . In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = \arctan\left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 \pm k_{v}}\right)$$

Terreno a permeabilità elevata

$$\theta = \arctan \Big(\frac{\gamma}{\gamma_{\text{sat}} - \gamma_{\text{w}}} \frac{k_{\text{h}}}{1 \pm k_{\text{v}}} \Big)$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove Wè il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi. Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r . Deve quindi essere verificata la seguente diseguaglianza:

$$\frac{M_s}{M_r} \geq \eta_r$$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

$$\frac{F_r}{F_s} \ge \eta_s$$

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terrenofondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_{\rm p} = N \tan \delta_{\rm f} + c_{\rm a} B_{\rm p}$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normaledella risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_{u}}{R} \geq \eta_{q}$$

γ

Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$\mathbf{q}_{u} = \mathbf{c} \mathbf{N}_{e} \mathbf{s}_{e} \mathbf{d}_{e} \mathbf{i}_{e} + \mathbf{q} \mathbf{N}_{q} \mathbf{s}_{q} \mathbf{d}_{q} \mathbf{i}_{q} + 0.5 \mathbf{B} \mathbf{\gamma} \mathbf{N}_{y} \mathbf{s}_{y} \mathbf{d}_{y} \mathbf{i}_{y}$$

In questa espressione:

c coesione del terreno in fondazione

φ angolo di attrito del terreno in fondazione

peso di volume del terreno in fondazione

B larghezza della fondazione

D profondità del piano di posa

q pressione geostatica alla quota del piano di posa

N fattori di capacità portante

d fattori di profondità del piano di posa

fattori di inclinazione del carico

Fattori di capacità portante		$N_c = (N_o - 1) \cot \phi$	$N_q = e^{i\pi \tan \phi} K_p$	$N_y = (N_0 - 1) \tan(1.4\phi)$
Fattori di forma	$\varphi = 0$	$z_{\alpha}=1\pm0.2K_{\beta}\frac{B'}{L'}$	$z_{\alpha} = 1$	$z_{_{Y}}=1$
	φ>0	$s_{\alpha}=1+0.2K_{\mu}\frac{B'}{L'}$	$s_{iq}=1+0.1K_{p}\frac{B'}{\Gamma!}$	$s_{\phi}=1+0.1K_{\mu}\frac{B^{x}}{L^{2}}$
Fattori di profondità	φ = 0	$d_c = 1 + 0.2 \frac{D}{B} \sqrt{K_p}$	$d_{_{\Omega}}=1$	$d_y = 1$
	φ>0	$d_a = 1 + 0.2 \frac{D}{B} \sqrt{K_p}$	$d_{ij} = 1 + 0.1 \frac{D}{B} \sqrt{K_{ji}}$	$d_{\gamma} = 1 + 0.1 \frac{D}{B} \sqrt{K_{\mu}}$
Fattori di inclinazione del carico	φ = 0	$i_{c} = \left(1 - \frac{\theta^{\circ}}{90^{\circ}}\right)^{2}$	$i_{ij} = \left(1 - \frac{\theta^{\circ}}{90^{\circ}}\right)^{2}$	$i_y = 0$
	φ>0	$i_a = \left(1 - \frac{\theta^a}{\alpha n^a}\right)^2$	$i_q = \left(1 - \frac{\theta^o}{90^o}\right)^2$	$i_g = \left(1 - \frac{\theta^o}{\sigma^o}\right)^2$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

$$K_p = \tan^2\left(45^\circ + \frac{\varphi}{2}\right)$$

Riduzione per eccentricità del carico

Nel caso in cui il carico al piano di posa della fondazione risulta eccentrico, Meyerhof propone di moltiplicare la capacità portante ultima per un fattore correttivo Re

$R_0 = 1.0 - 2.0 \frac{9}{R}$	per terreni coesivi
$R_{\rm e} = 1.0 - \sqrt{\frac{\epsilon}{R}}$	per terreni incoerenti

con e eccentricità del carico e B la dimensione minore della fondazione.

Riduzione per effetto piastra

Per valori elevati di B (dimensione minore della fondazione), Bowles propone di utilizzare un fattore correttivo r_{γ} del solo termine sul peso di volume (0.5 B γ N $_{\gamma}$) quando B supera i 2 m.

$$r_{y} = 1.0 - 0.25 \log \frac{B}{2.0}$$

Il termine sul peso di volume diventa:

$$0.5B\gamma N_{\gamma}r_{\gamma}$$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η₉.

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro. Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\eta = \frac{\sum_{i=0}^{n} \left[\frac{c_i b_i + (W_i - u_i b_i) \tan \phi_i}{m} \right]}{\sum_{i=0}^{n} W_i \sin \alpha_i}$$

dove il termine m è espresso da

$$m = \left(1 + \frac{\tan \, \phi_i \tan \, \alpha_i}{\eta}\right) \cos \alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, \mathcal{W} è il peso della striscia i_{esima} , α e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa è risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fin quando il valore calcolato coincide con il valore assunto.

Relazione completa Aztec Informatica s.r.l. * MAX 7

Dati

Materiali

Simbologia adottata

Indice materiale Descr Descrizione del materiale

Calcestruzzo armato

C N/E Classe di resistenza del cls Calcestruzzo Nuovo o Esistente Classe di resistenza dell'acciaio

Peso specifico, espresso in [kg/mc] Resistenza caratteristica a compressione, espressa in [kg/cmq] γ Rck

Resistenza caratteristica media a compressione, espressa in [kg/cmq] Modulo elastico, espresso in [kg/cmq] fcm E

Coeff. di Poisson
Coeff. di omogenizzazione acciaio/cls
Coeff. di omogenizzazione cls teso/compresso n ntc

<u>Pietrame</u>

Peso di volume, espresso in [kg/mc] . σ_{ср} Tensione di compressione, espresso in [kg/cmq] Angolo di attrito interno, espresso in [°] Resistenza a taglio, espressa in [kg/cmq]

Calcestruzzo armato

n°	Descr	N/E	С	Α	γ	Rck / fcm	E	ν	n	ntc
					[kg/mc]	[kg/cmq]	[kg/cmq]			
1	Cls Armato	N E	C25/30	B450C	2500,00	250,00 0,00	306659 0	0.30	15.00	0.50

Acciai

Descr	f yk	fuk	fym
	[kg/cmq]	[kg/cmq]	[kg/cmq]
B450C	4588,65	5506,38	0,00

Gabbioni

n°	Descr	γ	σср	ф	τp
		[kg/mc]	[kg/cmq]	[°]	[kg/cmq]
4	Pietrame	2000,00	30,00	45.00	0,00

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	X	Y	Α
	[m]	[m]	[°]
1	0,00	0,00	0.000
2	10,00	2,50	14.036

5,00

[m]

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

Geometria muro

Altezza paramento libero

Geometria paramento e fondazione

Lungnezza muro	10,00	[m]
<u>Paramento</u>		
Materiale	Pietrame	
Altezza paramento	5.00	[m]

Geometria gradoni

Simbologia adottata

indice gradone (a partire dall'alto)
Base superiore ed inferiore del gradone, espressa in [m]
altezza del gradone, espressa in [m]
inclinazione esterna ed interna del gradone espressa in [°] n° Bs, Bi H

Ae, Ai

n°	X	Bs	Bi	Н	Ae	Ai
	[m]	[m]	[m]	[m]	[°]	[°]
1	0,00	1,00	1,00	1,00	0.00	0.00
2	0,00	1,50	1,50	1,00	0.00	0.00
3	0,00	2,00	2,00	1,00	0.00	0.00
4	0,00	2,50	2,50	1,00	0.00	0.00
5	0,00	3,00	3,00	1,00	0.00	0.00

Fondazione Materiale Lunghezza mensola di valle Lunghezza mensola di monte Lunghezza totale Inclinazione piano di posa Spessore	Cls Armato 0,75 0,50 4,25 0,00 0.50	[m] [m] [°]
Spessore Spessore magrone	0,50 0,00	[m] [m]

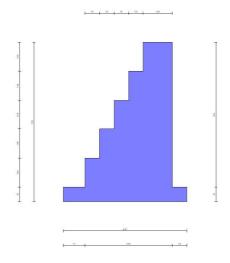


Fig. 1 - Sezione quotata del muro

Descrizione terreni

Parametri di resistenza

Simbologia adottata

n° Descr Indice del terreno Descrizione terreno

Peso di volume del terreno espresso in [kg/mc]
Peso di volume saturo del terreno espresso in [kg/mc]

γs φ δ Angolo d'attrito interno espresso in [°] Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kg/cmq]

Ca Adesione terra-muro espressa in [kg/cmq]

Per calcolo portanza con il metodo di Bustamante-Doix

Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

Tl Tensione tangenziale limite, espressa in [kg/cmq]

n°	Descr	γ	γsat	ф	δ	С	са	Cesp	τΙ	
		[kg/mc]	[kg/mc]	[°]	[°]	[kg/cmq]	[kg/cmq]		[kg/cmq]	
1	Terreno	1850,00	2000,00	30.000	20.000	0,04	0,02			
2	Terreno 2	2300.00	2400 00	30 000	26,000	0.50	0.25			

Stratigrafia

9

Simbologia adottata

Indice dello strato

n° H Spessore dello strato espresso in [m] Inclinazione espressa in [°] α Terreno Kwn, Kwt

Terreno dello strato
Costante di Winkler normale e tangenziale alla superficie espressa in Kg/cm²/cm

Per calcolo pali (solo se presenti)

Costante di Winkler orizzontale espressa in Kg/cm²/cm Coefficiente di spinta

Kw Ks

Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kststa	Kstsis
	[m]	[°]		[Kg/cm³]	[Kg/cm³]	[Kg/cm³]				
1	4,00	0.000	Terreno	0.329	0.190					
2	2.00	0.000	Terreno 2	0.329	0.267					

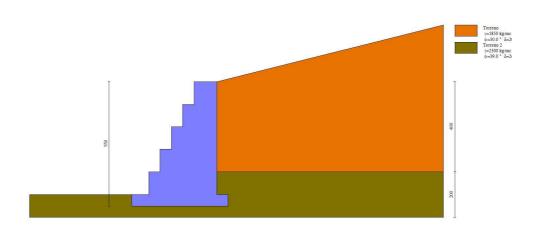


Fig. 2 - Stratigrafia

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto		Combinazioni statiche					ombinazion	i sismiche
			UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.80	0.80	0.80	0.80	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γQ,sfav	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	VOT.sfav	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	ni statiche	Combinazio	ni sismiche
		M1	M1 M2		M2
Tangente dell'angolo di attrito	γtan(_φ ')	1.00	1.25	1.00	1.00
Coesione efficace	γc'	1.00	1.25	1.00	1.00
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Con	binazioni stat	iche	Combinazioni sismiche			
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltamento			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \; G_1 \; + \; \gamma_{G2} \; G_2 \; + \; \gamma_{Q1} \; Q_{k1} \; + \; \gamma_{Q2} \; Q_{k2} \; + \; \gamma_{Q3} \; Q_{k3} \; + \; ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} \ Q_{k1} + \Psi_{2,2} \ Q_{k2} + \Psi_{2,3} \ Q_{k3} + ...$$

I valori dei coeff. $\Psi_{0,j}$, $\Psi_{1,j}$, $\Psi_{2,j}$ sono definiti nelle singole condizioni variabili.

I valori dei coeff. $\gamma_{\rm G}$ e $\gamma_{\rm Q}$, sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 5 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 6 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 7 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 8 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 9 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole

Condizione	γ	Ψ	Effetto
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Dati sismici

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a g	[m/s ²]		1.980	0.890
Accelerazione al suolo	a ₉ /g	[%]		0.202	0.091
Massimo fattore amplificazione spettro orizzontale	F0			2.501	2.443
Periodo inizio tratto spettro a velocità costante	Tc*			0.306	0.279
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.397	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T2	1 200	

Stato limite	Coeff. di riduzione β _m	kh [%]	kv [%]
Ultimo	0.380	12.858	6.429
Ultimo - Ribaltamento	0.570	19.286	9.643
Esercizio	0.470	7.675	3.838

Forma diagramma incremento sismico Stessa forma del diagramma statico

Opzioni di calcolo

Spinta

Metodo di calcolo della spinta Culmann Tipo di spinta Spinta Spinta attiva

Correzione Incremento Sismico per presenza di falda SI Terreno a bassa permeabilità NO Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanza Meyerhof
Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata
Criterio di riduzione per eccentricità della portanza Meyerhof
Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite (0.5ByN_y) Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale Bishop

Altro

Partecipazione spinta passiva terreno antistante 0.00
Partecipazione resistenza passiva dente di fondazione 50.00
Componente verticale della spinta nel calcolo delle sollecitazioni NO
Considera terreno sulla fondazione di valle NO
Considera spinta e peso acqua fondazione di valle NO
Sezioni verifica muri a gravità Tutte

Richiesto controllo eccentricità verifiche muro a gravità in cls

<u>Spostamenti</u>

Modello a blocchi

Non è stato richiesto il calcolo degli spostamenti

Spostamento limite 5,00 [cm]

Cedimenti

Non è stato richiesto il calcolo dei cedimenti

Risultati per combinazione

Spinta e forze

Simbologia adottata Ic Indice della combinazione

Ic A I V Cx, Cy Px, Py

Indice della comminazione
Tipo azione
Inclinazione della spinta, espressa in [°]
Valore dell'azione, espressa in [kg]
Componente in direzione X ed Y dell'azione, espressa in [kg]
Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	CY	Px	Py
		[kg]	[°]	[kg]	[kg]	[m]	[m]
1	Spinta statica	5651	20,03	5309	1936	0,50	-2,81
	Peso/Inerzia muro			0	25313/0	-1,23	-3,47
	Peso/Inerzia terrapieno			0	4908/0	0,25	-2,47
2	Spinta statica	3969	20,03	3729	1360	0,50	-2,86
	Incremento di spinta sismica		2264	2127	776	0,50	-3,63
	Peso/Inerzia muro			3255	25313/1627	-1,23	-3,47
	Peso/Inerzia terrapieno			631	4908/316	0,25	-2,47
3	Spinta statica	3969	20,03	3729	1360	0,50	-2,86
	Incremento di spinta sismica		1550	1456	531	0,50	-3,63
	Peso/Inerzia muro			3255	25313/-1627	-1,23	-3,47
	Peso/Inerzia terrapieno			631	4908/-316	0,25	-2,47

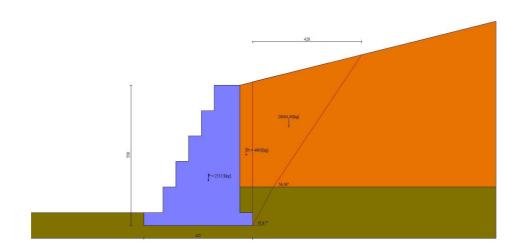


Fig. 3 - Cuneo di spinta (combinazione statica) (Combinazione nº 1)

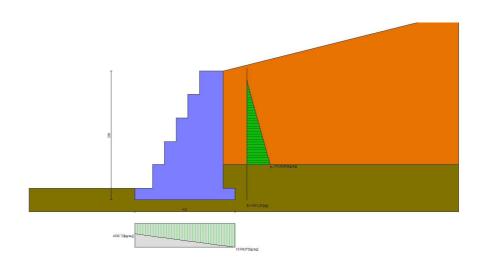


Fig. 4 - Diagramma delle pressioni (combinazione statica) (Combinazione nº 1)

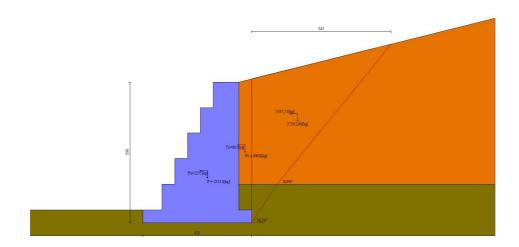


Fig. 5 - Cuneo di spinta (combinazione sismica) (Combinazione nº 2)

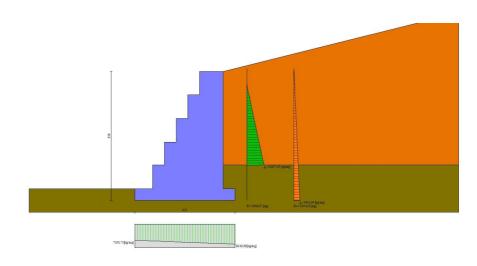


Fig. 6 - Diagramma delle pressioni (combinazione sismica) (Combinazione nº 2)

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb

Indice/Tipo combinazione
Sisma (H: componente orizzontale, V: componente verticale)
Coeff. di sicurezza allo scorrimento

S FSsco Coeff. di sicurezza al ribaltamento FSQLIM FSSTAB FSHYD FSUPL Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

Cmb	Sismica	FSsco	FSRIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		4.955		53.409			
2 - STR (A1-M1-R3)	H + V	2.808		44.157			
3 - STR (A1-M1-R3)	H - V	2.794		51.061			
4 - GEO (A2-M2-R2)					2.937		
5 - GEO (A2-M2-R2)	H + V				2.896		
6 - GEO (A2-M2-R2)	H - V				2.981		
7 - EQU (A1-M1-R3)			6.410				
8 - EQU (A1-M1-R3)	H + V		3.515				
9 - EQU (A1-M1-R3)	H - V		2.622				

Verifica a scorrimento fondazione

Simbologia adottata

n° Rsa Indice combinazione

Resistenza allo scorrimento per attrito, espresso in [kg] Rpt Resistenza passiva terreno antistante, espresso in [kg]

Rps Rp Rt R T FS Resistenza passiva sperone, espresso in [kg] Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kg] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kg] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kg]

Carico parallelo al piano di posa, espresso in [kg]

Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	
1 - STR (A1-M1-R3)	26309	0	0			26309	5309	4.955
2 - STR (A1-M1-R3) H + V	27353	0	0			27353	9741	2.808
3 - STR (A1-M1-R3) H - V	25339	0	0			25339	9070	2,794

Verifica a carico limite

Simbologia adottata

Indice combinazione N

Carico normale totale al piano di posa, espresso in [kg] carico limite del terreno, espresso in [kg]

Qu Qd FS Portanza di progetto, espresso in [kg]

Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kg]	[kg]	[kg]	
1 - STR (A1-M1-R3)	32156	1717430	1226736	53.409
2 - STR (A1-M1-R3) H + V	34298	1514503	1262086	44.157
3 - STR (A1-M1-R3) H - V	30168	1540427	1283689	51.061

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Nc, Nq, Nγ Fattori di capacità portante ic, iq, iγ dc, dq, dγ Fattori di inclinazione del carico Fattori di profondità del piano di posa gc, gq, gγ Fattori di inclinazione del profilo topografico bc, bq, bγ sc, sq, sγ Fattori di inclinazione del piano di posa Fattori di forma della fondazione

pc, pq, pγ Fattori di riduzione per punzonamento secondo Vesic

Fattore di riduzione capacità portante per eccentricità secondo Meyerhof Re

Ir, Irc

Tadici di rigidezza per punzonamento secondo Vesic Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN_y viene moltiplicato per

questo fattore Ď

Affondamento del piano di posa, espresso in [m] В Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kg/mc] Angolo di attrito del terreno medio, espresso in [º] Coesione del terreno medio, espresso in [kg/cmq] Pressione terreno valle, espressa in [kg/cmq] σν

om Pressione terreno monte, espressa in [kg/cmq]
Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq gy	bc bq bγ	sc sq sγ	pc pq pγ	Ir	Irc	Re	гү
1	67.867 55.957	0.803 0.803	1.049 1.025							0.743	0.918
	77.333	0.577	1.025								
2	67.867 55.957	0.679 0.679	1.049 1.025							0.866	0.918
	77.333	0.352	1.025								
3	67.867	0.663	1.049							0.916	0.918
	55.957 77.333	0.663 0.326	1.025 1.025								

n°	D	B'	Н	Η γ		С
	[m]	[m]	[m]	[kg/mc]	[°]	[kg/cmq]
1	0,50	4,25	4,46	2300	39.00	0,50
2	0,50	4,25	4,46	2300	39.00	0,50
3	0,50	4,25	4,46	2300	39.00	0,50

n°	σv	Œm
	[kg/cmq]	[kg/cmq]
1	0,46	1,05
2	0,72	0,89
3	0,68	0,74

Simbologia adottata

Indice combinazione

Ms Momento stabilizzante, espresso in [kgm]

Mr FS Momento ribaltante, espresso in [kgm] Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS
	[kgm]	[kgm]	
7 - EQU (A1-M1-R3)	91653	14298	6.410
8 - EQU (A1-M1-R3) H + V	102706	29221	3.515
9 - EQU (A1-M1-R3) H - V	93260	35569	2.622

2.896

2.981

10,26

10,26

-1,50; 4,50

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione

Centro superficie di scorrimento, espresso in [m]

Ic C R FS Raggio, espresso in [m] Fattore di sicurezza

Ic FS [m] [m] -1,50; 4,50 -1,50; 4,50 4 - GEO (A2-M2-R2) 10.26 2.937

Dettagli strisce verifiche stabilità

Simbologia adottata Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kg]

carico sulla striscia espresso in [kg] carico acqua sulla striscia espresso in [kg] Qy Qf

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [kg/cmq] α

5 - GEO (A2-M2-R2) H + V

6 - GEO (A2-M2-R2) H - V

b

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq] Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kg/cmq] Tx; Ty

Combinazione nº 4 - GEO (A2-M2-R2)

n°	w	Qy	Of	b	α	ф	С	u	Tx; Ty
	[kg]	[kg]	[kg]	[m]	[°]	[0]	[kg/cmq]	[kg/cmq]	[kg]
1	778	0	0	8,49 - 0,56	71.417	24.791	0,03	0,000	
2	2055	0	0	0,56	63.405	24.791	0,03	0,000	
3	2924	0	0	0,56	57.081	24.791	0,03	0,000	
4	3584	0	0	0,56	51.720	24.791	0,03	0,000	
5	4109	0	0	0,56	46.942	24.791	0,03	0,000	
6	4534	0	0	0,56	42.562	24.791	0,03	0,000	
7	4880	0	0	0,56	38.473	24.791	0,03	0,000	
8	5167	0	0	0,56	34.606	24.791	0,03	0,000	
9	5461	0	0	0,56	30.912	32.936	0,40	0,000	
10	5715	0	0	0,56	27.356	32.936	0,40	0,000	
11	5913	0	0	0,56	23.912	32.936	0,40	0,000	
12	6061	0	0	0,56	20.557	32.936	0,40	0,000	
13	6162	0	0	0,56	17.275	32.936	0,40	0,000	
14	6218	0	0	0,56	14.050	32.936	0,40	0,000	
15	6267	0	0	0,56	10.871	32.936	0,40	0,000	
16	6279	0	0	0,56	7.725	32.936	0,40	0,000	
17	6397	0	0	0,56	4.602	32.936	0,40	0,000	
18	5393	0	0	0,56	1.494	32.936	0,40	0,000	
19	4080	0	0	0,56	-1.611	32.936	0,40	0,000	
20	2818	0	0	0,56	-4.720	32.936	0,40	0,000	
21	1517	0	0	0,56	-7.843	32.936	0,40	0,000	
22	781	0	0	0,56	-10.990	32.936	0,40	0,000	
23	569	0	0	0,56	-14.171	32.936	0,40	0,000	
24	366	0	0	0,56	-17.398	32.936	0,40	0,000	
25	121	0	0	-5,40 - 0,56	-19.762	32.936	0,40	0,000	

Combinazione nº 5 - GEO (A2-M2-R2) H + V

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kg]	[kg]	[kg]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kg]
1	778	0	0	8,49 - 0,56	71.417	30.000	0,04	0,000	
2	2055	0	0	0,56	63.405	30.000	0,04	0,000	
3	2924	0	0	0,56	57.081	30.000	0,04	0,000	
4	3584	0	0	0,56	51.720	30.000	0,04	0,000	
5	4109	0	0	0,56	46.942	30.000	0,04	0,000	
6	4534	0	0	0,56	42.562	30.000	0,04	0,000	
7	4880	0	0	0,56	38.473	30.000	0,04	0,000	
8	5167	0	0	0,56	34.606	30.000	0,04	0,000	
9	5461	0	0	0,56	30.912	39.000	0,50	0,000	

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kg]	[kg]	[kg]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kg]
10	5715	0	0	0,56	27.356	39.000	0,50	0,000	
11	5913	0	0	0,56	23.912	39.000	0,50	0,000	
12	6061	0	0	0,56	20.557	39.000	0,50	0,000	
13	6162	0	0	0,56	17.275	39.000	0,50	0,000	
14	6218	0	0	0,56	14.050	39.000	0,50	0,000	
15	6267	0	0	0,56	10.871	39.000	0,50	0,000	
16	6279	0	0	0,56	7.725	39.000	0,50	0,000	
17	6397	0	0	0,56	4.602	39.000	0,50	0,000	
18	5393	0	0	0,56	1.494	39.000	0,50	0,000	
19	4080	0	0	0,56	-1.611	39.000	0,50	0,000	
20	2818	0	0	0,56	-4.720	39.000	0,50	0,000	
21	1517	0	0	0,56	-7.843	39.000	0,50	0,000	
22	781	0	0	0,56	-10.990	39.000	0,50	0,000	
23	569	0	0	0,56	-14.171	39.000	0,50	0,000	
24	366	0	0	0,56	-17.398	39.000	0,50	0,000	
25	121	0	0	-5,40 - 0,56	-19.762	39.000	0,50	0,000	

Combinazione nº 6 - GEO (A2-M2-R2) H - V

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kg]	[kg]	[kg]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kg]
1	778	0	0	8,49 - 0,56	71.417	30.000	0,04	0,000	
2	2055	0	0	0,56	63.405	30.000	0,04	0,000	
3	2924	0	0	0,56	57.081	30.000	0,04	0,000	
4	3584	0	0	0,56	51.720	30.000	0,04	0,000	
5	4109	0	0	0,56	46.942	30.000	0,04	0,000	
6	4534	0	0	0,56	42.562	30.000	0,04	0,000	
7	4880	0	0	0,56	38.473	30.000	0,04	0,000	
8	5167	0	0	0,56	34.606	30.000	0,04	0,000	
9	5461	0	0	0,56	30.912	39.000	0,50	0,000	
10	5715	0	0	0,56	27.356	39.000	0,50	0,000	
11	5913	0	0	0,56	23.912	39.000	0,50	0,000	
12	6061	0	0	0,56	20.557	39.000	0,50	0,000	
13	6162	0	0	0,56	17.275	39.000	0,50	0,000	
14	6218	0	0	0,56	14.050	39.000	0,50	0,000	
15	6267	0	0	0,56	10.871	39.000	0,50	0,000	
16	6279	0	0	0,56	7.725	39.000	0,50	0,000	
17	6397	0	0	0,56	4.602	39.000	0,50	0,000	
18	5393	0	0	0,56	1.494	39.000	0,50	0,000	
19	4080	0	0	0,56	-1.611	39.000	0,50	0,000	
20	2818	0	0	0,56	-4.720	39.000	0,50	0,000	
21	1517	0	0	0,56	-7.843	39.000	0,50	0,000	
22	781	0	0	0,56	-10.990	39.000	0,50	0,000	
23	569	0	0	0,56	-14.171	39.000	0,50	0,000	
24	366	0	0	0,56	-17.398	39.000	0,50	0,000	
25	121	0	0	-5,40 - 0,56	-19.762	39.000	0,50	0,000	

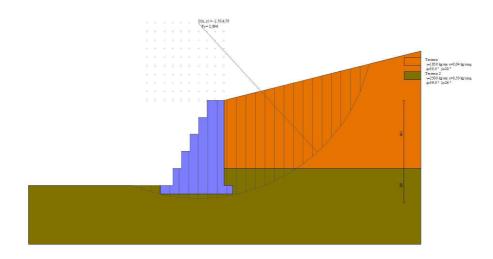


Fig. 7 - Stabilità fronte di scavo - Cerchio critico (Combinazione n° 5)

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

n° X N T M Indice della sezione

N Posizione della sezione

X Posizione della sezione, espresso in [m]

N Sforzo normale, espresso in [kg]. Positivo se di compressione.

T Taglio, espresso in [kg]. Positivo se diretto da monte verso valle

M Momento, espresso in [kgm]. Positivo se tende le fibre contro terra (a monte)

La posizione delle sezioni di verifica fanno riferimento al sistema di riferimento globale la cui origine è nello spigolo in alto a destra del paramento.

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	X	N	Т	М
	[m]	[kg]	[kg]	[kgm]
1	0,00	0	0	0
2	-0,10	200	0	0
3	-0,20	400	0	0
4	-0,30	599	0	0
5	-0,40	799	0	0
6	-0,50	999	2	0
7	-0,60	1199	7	0
8	-0,70	1399	17	2
9	-0,80	1598	36	4
10	-0,90	1798	62	9
11	-1,00	1998	96	17
12	-1,00	2003	97	-483
13	-1,10	2302	139	-471
14	-1,20	2602	190	-455
15	-1,30	2901	248	-433
16	-1,40	3201	315	-405
17	-1,50	3500	390	-370
18	-1,60	3799	472	-327
19	-1,70	4099	563	-276
20	-1,80	4398	662	-214
21	-1,90	4698	769	-143
22	-2,00	4997	885	-61
23	-2,00	5004	887	-1309
24	-2,10	5403	1011	-1214
25	-2,20	5802	1143	-1107
26	-2,30	6202	1282	-986
27	-2,40	6601	1431	-851
28	-2,50	7000	1587	-700
29	-2,60	7399	1751	-534
30	-2,70	7798	1924	-350
31	-2,80	8198	2105	-149
32	-2,90	8597	2294	70
33	-3,00	8996	2491	309
34	-3,00	9005	2495	-1936
35	-3,10	9504	2700	-1677
36	-3,20	10003	2914	-1397
37	-3,30	10502	3136	-1095
38	-3,40	11001	3366	-771
39	-3,50	11500	3604	-423
40	-3,60	11999	3850	-51
41	-3,70	12498	4105	346
42	-3,80	12997	4367	768
43	-3,90	13496	4638	1218
44	-4,00	13995	4917	1694
45	-4,00	14006	4923	-1796
46	-4,10	14605	4949	-1302
47	-4,20	15205	4949	-807
48	-4,30	15804	4949	-313
49	-4,40	16404	4949	182
50	-4,50	17003	4949	676
51	-4,60	17602	4949	1170
52	-4,70	18202	4949	1665
53	-4,80	18801	4949	2159
54	-4,90	19401	4949	2653
55	-5,00	20000	4949	3148

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Х	N	T	М
	[m]	[kg]	[kg]	[kgm]
1	0,00	0	0	0
2	-0,10	213	26	1
3	-0,20	425	55	5
4	-0,30	638	84	12
5	-0,40	851	115	22
6	-0,50	1063	148	35
7	-0,60	1276	183	52
8	-0,70	1489	221	72
9	-0,80	1701	264	96
10	-0,90	1914	314	125
11	-1,00	2126	372	159
12	-1,00	2132	373	-372
13	-1,10	2450	451	-331
14	-1,20	2769	537	-282
15	-1,30	3088	631	-224
16	-1,40	3406	732	-156
17	-1,50	3725	841	-77
18	-1,60	4044	958	13
19	-1,70	4362	1083	114
20	-1,80	4681	1215	229
21	-1,90	5000	1356	357
22	-2,00	5318	1504	500
23	-2,00	5326	1507	-828
24	-2,10	5751	1676	-669

n°	X	N	Т	М
	[m]	[kq]	[kg]	[kgm]
25	-2,20	6175	1853	-493
26	-2,30	6600	2037	-299
27	-2,40	7025	2230	-86
28	-2,50	7450	2430	147
29	-2,60	7875	2638	399
30	-2,70	8300	2854	674
31	-2,80	8725	3078	969
32	-2,90	9149	3310	1288
33	-3,00	9574	3550	1630
34	-3,00	9584	3555	-757
35	-3,10	10115	3815	-389
36	-3,20	10646	4083	5
37	-3,30	11177	4359	426
38	-3,40	11708	4644	875
39	-3,50	12239	4935	1353
40	-3,60	12770	5235	1860
41	-3,70	13301	5543	2398
42	-3,80	13833	5858	2967
43	-3,90	14364	6182	3568
44	-4,00	14895	6513	4201
45	-4,00	14906	6520	489
46	-4,10	15544	6672	1142
47	-4,20	16182	6806	1808
48	-4,30	16820	6942	2487
49	-4,40	17458	7080	3180
50	-4,50	18096	7220	3886
51	-4,60	18734	7361	4606
52	-4,70	19372	7504	5341
53	-4,80	20010	7649	6090
54	-4,90	20648	7796	6853
55	-5,00	21286	7945	7632

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Х	N	Т	М
	[m]	[kg]	[kg]	[kgm]
1	0,00	0	0	0
2	-0,10	187	26	1
3	-0,20	374	54	5
4	-0,30	561	82	12
5	-0,40	748	111	22
6	-0,50	935	142	34
7	-0,60	1122	174	50
8	-0,70	1309	208	69
9	-0,80	1496	248	92
10	-0,90	1683	294	119
11	-1,00	1870	347	151
12	-1,00	1874	348	-316
13	-1,10	2154	421	-278
14	-1,20	2435	501	-232
15	-1,30	2715	588	-178
16	-1,40	2995	683	-114
17	-1,50	3275	785	-41
18	-1,60	3555	894	42
19	-1,70	3835	1010	137
20	-1,80	4115	1134	244
21	-1,90	4396	1265	364
22	-2,00	4676	1403	497
23	-2,00	4682	1406	-670
24	-2,10	5056	1565	-522
25	-2,20	5429	1731	-357
26	-2,30	5803	1904	-176
27	-2,40	6176	2084	23
28	-2,50	6550	2272	240
29 30	-2,60	6924	2468	477 733
31	-2,70	7297 7671	2670 2880	1010
32	-2,80	8044	3098	1308
33	-2,90 -3,00	8418	3322	1628
34		8426	3327	-470
35	-3,00	8893	3572	-126
36	-3,10 -3,20	9360	3825	243
37	-3,30	9827	4084	638
38	-3,40	10294	4352	1058
39	-3,50	10761	4626	1506
40	-3,60	11228	4908	1982
41	-3,70	11695	5197	2486
42	-3,80	12161	5494	3020
43	-3,90	12628	5798	3583
44	-4,00	13095	6109	4177
45	-4,00	13106	6116	914
46	-4,10	13666	6248	1526
47	-4,20	14227	6362	2148
48	-4,30	14788	6478	2782
49	-4,40	15349	6595	3427
50	-4,50	15910	6713	4084
51	-4,60	16471	6832	4753
52	-4,70	17032	6953	5433
53	-4,80	17593	7075	6126
54	-4,90	18153	7199	6831
55	-5,00	18714	7323	7549

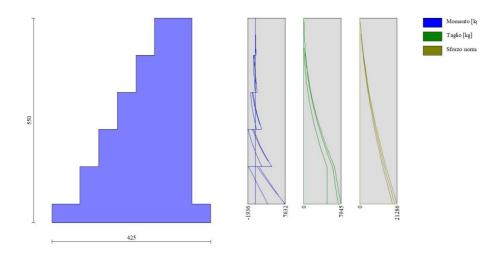


Fig. 8 - Paramento (Inviluppo)

Fondazione

Combinazione nº 1 - STR (A1-M1-R3)

n°	Х	N	Т	M
	[m]	[kg]	[kg]	[kgm]
1	-3,75	0	0	0
2	-3,66	0	319	15
3	-3,56	0	650	60
4	-3,47	0	993	137
5	-3,38	0	1349	247
6	-3,28	0	1717	390
7	-3,19	0	2097	569
8	-3,09	0	2490	784
9	-3,00	0	2895	1036
10	0,00	0	-1906	-469
11	0,10	0	-1509	-298
12	0,20	0	-1120	-166
13	0,30	0	-738	-73
14	0,40	0	-365	-18
15	0,50	0	0	0

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Х	N	Т	М
	[m]	[kg]	[kg]	[kgm]
1	-3,75	0	0	0
2	-3,66	0	560	26
3	-3,56	0	1123	105
4	-3,47	0	1690	237
5	-3,38	0	2260	422
6	-3,28	0	2834	661
7	-3,19	0	3412	954
8	-3,09	0	3993	1301
9	-3,00	0	4578	1702
10	0,00	0	-1114	-279
11	0,10	0	-892	-179
12	0,20	0	-670	-101
13	0,30	0	-447	-45
14	0,40	0	-224	-11
15	0,50	0	0	0

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Х	N	Т	М
	[m]	[kg]	[kg]	[kgm]
1	-3,75	0	0	0
2	-3,66	0	521	24
3	-3,56	0	1043	98
4	-3,47	0	1567	220
5	-3,38	0	2092	392
6	-3,28	0	2617	612
7	-3,19	0	3145	882
8	-3,09	0	3673	1202
9	-3,00	0	4203	1571
10	0,00	0	-1852	-467
11	0,10	0	-1488	-300
12	0,20	0	-1121	-169
13	0,30	0	-751	-75

n°	Х	N	T	M
	[m]	[kg]	[kg]	[kgm]
14	0,40	0	-377	-19
15	0.50	0	0	0

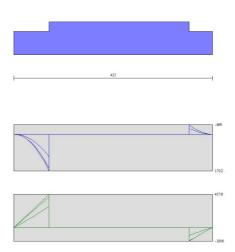


Fig. 9 - Fondazione (Inviluppo)

Verifiche strutturali

Paramento in pietrame

Simbologia adottata

indice sezione

n° Y As e σ Rt Et FSsco

ordinata sezione espressa in [m]
area sezione reagente espresso in [cmq]
eccentricità espresso in [cm]
tensione espressa in [kg/cmq]
resistenza ai carichi orizzontali espressa in [kg]

resistenza ai cariciii orizzontale espressa in [kg] Azione orizzontale espressa in [kg] fattore di sicurezza allo scorrimento (Rt/Et) momento stabilizzante espresso in [kgm] momento ribaltante espresso in [kgm] fattore di sicurezza a ribaltamento (Ms/Mr) Ms Mr

Combinazione nº 1 - STR (A1-M1-R3)

n°	Υ	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmg]	[kg]	[kq]		[kgm]	[kgm]	
1	0,00	10000	0,00	0.00	0,00	0.00	100,000	0.00	0,00	100.000
2	-0,10	10000	0,00	0,02	199,80	0,00	100.000	99,90	0,00	100.000
3	-0,20	10000	0,00	0,04	399,60	0,00	100.000	199,80	0,00	100.000
4	-0,30	10000	0,00	0,06	599,40	0,00	100.000	299,70	0,00	100.000
5	-0,40	10000	0,00	0,08	799,20	0,00	100.000	399,60	0,00	100.000
6	-0,50	10000	0,01	0,10	999,00	1,65	604.717	500,10	0,05	9127.308
7	-0,60	10000	0,04	0,12	1198,80	6,63	180.688	601,81	0,44	1364.713
8	-0,70	10000	0,11	0,14	1398,60	17,18	81.410	705,55	1,57	450.781
9	-0,80	10000	0,26	0,16	1598,40	35,57	44.933	812,15	4,13	196.415
10	-0,90	10000	0,50	0,19	1798,20	61,88	29.060	921,62	8,94	103.134
11	-1,00	10000	0,84	0,21	1998,00	96,16	20.778	1034,00	16,76	61.681
12	-1,00	15000	-24,12	0,26	2003,00	96,93	20.665	2055,17	16,96	121.200
13	-1,10	15000	-20,47	0,28	2302,40	139,34	16.524	2302,87	28,68	80.296
14	-1,20	15000	-17,49	0,29	2601,80	189,78	13.709	2554,96	45,04	56.732
15	-1,30	15000	-14,93	0,31	2901,20	248,28	11.685	2811,45	66,83	42.070
16	-1,40	15000	-12,66	0,32	3200,60	314,86	10.165	3072,35	94,86	32.388
17	-1,50	15000	-10,57	0,33	3500,00	389,54	8.985	3337,67	129,94	25.685
18	-1,60	15000	-8,61	0,34	3799,40	472,32	8.044	3607,42	172,88	20.866
19	-1,70	15000	-6,72	0,35	4098,80	563,23	7.277	3881,60	224,49	17.291
20	-1,80	15000	-4,88	0,35	4398,20	662,26	6.641	4160,21	285,57	14.568
21	-1,90	15000	-3,05	0,35	4697,60	769,43	6.105	4443,27	356,95	12.448
22	-2,00	15000	-1,21	0,35	4997,00	884,74	5.648	4730,78	439,42	10.766
23	-2,00	20000	-26,16	0,45	5004,00	887,14	5.641	7399,78	441,19	16.772
24	-2,10	20000	-22,47	0,45	5403,20	1010,76	5.346	7888,97	535,83	14.723
25	-2,20	20000	-19,07	0,46	5802,40	1142,54	5.079	8384,10	643,21	13.035
26	-2,30	20000	-15,90	0,46	6201,60	1282,47	4.836	8885,16	764,15	11.627
27	-2,40	20000	-12,89	0,46	6600,80	1430,57	4.614	9392,17	899,47	10.442
28	-2,50	20000	-10,00	0,46	7000,00	1586,83	4.411	9905,12	1049,97	9.434
29	-2,60	20000	-7,21	0,45	7399,20	1751,26	4.225	10424,01	1216,47	8.569
30	-2,70	20000	-4,49	0,44	7798,40	1923,86	4.054	10948,86	1399,79	7.822
31	-2,80	20000	-1,82	0,43	8197,60	2104,63	3.895	11479,64	1600,74	7.171
32	-2,90	20000	0,82	0,44	8596,80	2293,57	3.748	12016,38	1820,15	6.602

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
33	-3,00	20000	3,43	0,50	8996,00	2490,69	3.612	12559,07	2058,81	6.100
34	-3,00	25000	-21,50	0,55	9005,00	2494,72	3.610	17526,26	2063,80	8.492
35	-3,10	25000	-17,65	0,54	9504,00	2700,18	3.520	18336,97	2322,96	7.894
36	-3,20	25000	-13,97	0,53	10003,00	2913,82	3.433	19155,11	2603,03	7.359
37	-3,30	25000	-10,43	0,53	10502,00	3135,64	3.349	19980,70	2904,83	6.878
38	-3,40	25000	-7,01	0,51	11001,00	3365,63	3.269	20813,73	3229,17	6.446
39	-3,50	25000	-3,68	0,50	11500,00	3603,81	3.191	21654,20	3576,88	6.054
40	-3,60	25000	-0,43	0,48	11999,00	3850,17	3.116	22502,12	3948,77	5.699
41	-3,70	25000	2,77	0,53	12498,00	4104,71	3.045	23357,48	4345,65	5.375
42	-3,80	25000	5,91	0,59	12997,00	4367,44	2.976	24220,30	4768,34	5.079
43	-3,90	25000	9,02	0,66	13496,00	4638,35	2.910	25090,55	5217,66	4.809
44	-4,00	25000	12,11	0,72	13995,00	4917,45	2.846	25968,26	5694,43	4.560
45	-4,00	30000	-12,82	0,59	14006,00	4923,00	2.845	33884,93	5704,27	5.940
46	-4,10	30000	-8,91	0,57	14605,40	4948,67	2.951	34811,60	6198,48	5.616
47	-4,20	30000	-5,31	0,56	15204,80	4948,67	3.073	35710,70	6692,85	5.336
48	-4,30	30000	-1,98	0,55	15804,20	4948,67	3.194	36609,80	7187,22	5.094
49	-4,40	30000	1,11	0,56	16403,60	4948,67	3.315	37508,90	7681,59	4.883
50	-4,50	30000	3,98	0,61	17003,00	4948,67	3.436	38408,00	8175,96	4.698
51	-4,60	30000	6,65	0,66	17602,40	4948,67	3.557	39307,10	8670,34	4.534
52	-4,70	30000	9,15	0,72	18201,80	4948,67	3.678	40206,20	9164,71	4.387
53	-4,80	30000	11,48	0,77	18801,20	4948,67	3.799	41105,30	9659,08	4.256
54	-4,90	30000	13,68	0,82	19400,60	4948,67	3.920	42004,40	10153,45	4.137
55	-5,00	30000	15,74	0,88	20000,00	4948,67	4.041	42903,50	10647,82	4.029

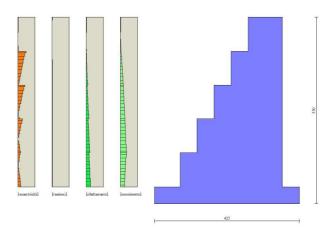


Fig. 10 - Verifiche paramento pietrame (Combinazione nº 1)

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Υ	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
1	0,00	10000	0,00	0,00	0,00	0,00	100.000	0,00	0,00	100.000
2	-0,10	10000	0,62	0,02	212,64	26,48	8.029	106,61	1,31	81.405
3	-0,20	10000	1,26	0,05	425,29	54,56	7.795	213,80	5,34	40.005
4	-0,30	10000	1,92	0,07	637,93	84,22	7.575	321,57	12,26	26.223
5	-0,40	10000	2,61	0,10	850,58	115,47	7.366	429,92	22,22	19.345
6	-0,50	10000	3,33	0,13	1063,22	148,31	7.169	538,84	35,39	15.227
7	-0,60	10000	4,07	0,16	1275,87	182,73	6.982	648,34	51,91	12.490
8	-0,70	10000	4,84	0,19	1488,51	220,68	6.745	759,13	72,01	10.541
9	-0,80	10000	5,65	0,23	1701,16	264,14	6.440	871,91	96,18	9.065
10	-0,90	10000	6,53	0,27	1913,80	314,14	6.092	987,09	125,01	7.896
11	-1,00	10000	7,49	0,31	2126,45	371,76	5.720	1105,03	159,20	6.941
12	-1,00	15000	-17,46	0,24	2131,77	373,12	5.713	2194,08	159,95	13.717
13	-1,10	15000	-13,51	0,25	2450,42	451,33	5.429	2454,74	201,02	12.211
14	-1,20	15000	-10,18	0,26	2769,06	537,24	5.154	2719,61	250,29	10.866
15	-1,30	15000	-7,24	0,27	3087,71	630,86	4.894	2988,69	308,51	9.687
16	-1,40	15000	-4,57	0,27	3406,36	732,22	4.652	3262,00	376,47	8.665
17	-1,50	15000	-2,07	0,27	3725,01	841,35	4.427	3539,55	454,92	7.781
18	-1,60	15000	0,31	0,27	4043,65	958,26	4.220	3821,35	544,66	7.016
19	-1,70	15000	2,62	0,32	4362,30	1082,95	4.028	4107,39	646,45	6.354
20	-1,80	15000	4,89	0,37	4680,95	1215,45	3.851	4397,70	761,08	5.778
21	-1,90	15000	7,14	0,43	4999,60	1355,76	3.688	4692,27	889,31	5.276
22	-2,00	15000	9,40	0,49	5318,25	1503,89	3.536	4991,11	1031,95	4.837
23	-2,00	20000	-15,54	0,39	5325,70	1507,06	3.534	7816,90	1034,96	7.553
24	-2,10	20000	-11,63	0,39	5750,56	1676,01	3.431	8327,38	1193,73	6.976
25	-2,20	20000	-7,98	0,38	6175,42	1852,79	3.333	8843,57	1369,75	6.456
26	-2,30	20000	-4,53	0,37	6600,29	2037,41	3.240	9365,46	1563,80	5.989
27	-2,40	20000	-1,22	0,36	7025,15	2229,87	3.150	9893,06	1776,68	5.568
28	-2,50	20000	1,97	0,39	7450,01	2430,17	3.066	10426,37	2009,15	5.189
29	-2,60	20000	5,07	0,45	7874,88	2638,33	2.985	10965,40	2262,00	4.848
30	-2,70	20000	8,11	0,52	8299,74	2854,35	2.908	11510,15	2536,02	4.539
31	-2,80	20000	11,11	0,58	8724,60	3078,22	2.834	12060,61	2831,99	4.259
32	-2,90	20000	14,08	0,65	9149,47	3309,95	2.764	12616,80	3150,69	4.004

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
33	-3,00	20000	17,03	0,72	9574,33	3549,54	2.697	13178,70	3492,91	3.773
34	-3,00	25000	-7,90	0,46	9583,91	3554,55	2.696	18417,88	3500,02	5.262
35	-3,10	25000	-3,85	0,44	10114,99	3814,99	2.651	19260,34	3867,69	4.980
36	-3,20	25000	0,04	0,43	10646,07	4083,30	2.607	20109,95	4261,75	4.719
37	-3,30	25000	3,81	0,49	11177,15	4359,48	2.564	20966,72	4682,98	4.477
38	-3,40	25000	7,47	0,55	11708,23	4643,53	2.521	21830,65	5132,17	4.254
39	-3,50	25000	11,05	0,62	12239,31	4935,44	2.480	22701,74	5610,09	4.047
40	-3,60	25000	14,57	0,69	12770,39	5235,23	2.439	23580,00	6117,54	3.854
41	-3,70	25000	18,03	0,76	13301,47	5542,89	2.400	24465,41	6655,31	3.676
42	-3,80	25000	21,45	0,84	13832,55	5858,43	2.361	25358,00	7224,17	3.510
43	-3,90	25000	24,84	0,92	14363,63	6181,84	2.324	26257,74	7824,91	3.356
44	-4,00	25000	28,21	1,00	14894,71	6513,12	2.287	27164,66	8458,32	3.212
45	-4,00	30000	3,28	0,53	14906,41	6519,87	2.286	35494,95	8471,36	4.190
46	-4,10	30000	7,35	0,59	15544,35	6671,81	2.330	36608,00	9124,41	4.012
47	-4,20	30000	11,17	0,66	16182,28	6805,98	2.378	37706,00	9790,06	3.851
48	-4,30	30000	14,79	0,73	16820,21	6942,02	2.423	38802,81	10469,07	3.706
49	-4,40	30000	18,21	0,79	17458,15	7079,89	2.466	39898,75	11161,66	3.575
50	-4,50	30000	21,47	0,86	18096,08	7219,59	2.507	40994,08	11868,05	3.454
51	-4,60	30000	24,59	0,93	18734,02	7361,09	2.545	42089,05	12588,43	3.343
52	-4,70	30000	27,57	1,00	19371,95	7504,37	2.581	43183,88	13323,02	3.241
53	-4,80	30000	30,43	1,07	20009,88	7649,41	2.616	44278,78	14072,01	3.147
54	-4,90	30000	33,19	1,15	20647,82	7796,20	2.648	45373,91	14835,60	3.058
55	-5,00	30000	35,85	1,22	21285,75	7944,72	2.679	46469,44	15613,97	2.976

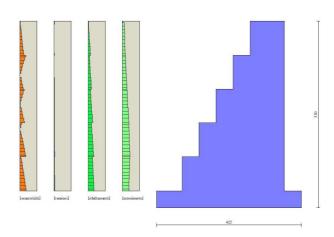


Fig. 11 - Verifiche paramento pietrame (Combinazione n° 2)

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Υ	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
1	0,00	10000	0,00	0,00	0,00	0,00	100.000	0,00	0,00	100.000
2	-0,10	10000	0,70	0,02	186,96	26,23	7.127	93,68	1,30	71.989
3	-0,20	10000	1,41	0,04	373,91	53,55	6.983	187,75	5,28	35.576
4	-0,30	10000	2,15	0,06	560,87	81,95	6.844	282,21	12,04	23.447
5	-0,40	10000	2,90	0,09	747,82	111,44	6.711	377,07	21,69	17.387
6	-0,50	10000	3,67	0,11	934,78	142,01	6.583	472,32	34,34	13.755
7	-0,60	10000	4,47	0,14	1121,73	173,66	6.459	567,97	50,10	11.338
8	-0,70	10000	5,28	0,17	1308,69	208,34	6.282	664,72	69,14	9.615
9	-0,80	10000	6,14	0,20	1495,64	248,01	6.031	763,29	91,89	8.307
10	-0,90	10000	7,07	0,24	1682,60	293,72	5.728	864,05	118,89	7.268
11	-1,00	10000	8,07	0,28	1869,55	346,56	5.395	967,41	150,81	6.415
12	-1,00	15000	-16,88	0,21	1874,23	347,82	5.388	1922,82	151,51	12.691
13	-1,10	15000	-12,91	0,22	2154,38	420,74	5.120	2151,73	189,80	11.337
14	-1,20	15000	-9,53	0,22	2434,54	500,84	4.861	2384,56	235,72	10.116
15	-1,30	15000	-6,55	0,23	2714,69	588,16	4.616	2621,33	290,01	9.039
16	-1,40	15000	-3,82	0,23	2994,84	682,72	4.387	2862,05	353,36	8.099
17	-1,50	15000	-1,26	0,23	3274,99	784,54	4.174	3106,74	426,52	7.284
18	-1,60	15000	1,19	0,25	3555,15	893,63	3.978	3355,40	510,20	6.577
19	-1,70	15000	3,58	0,29	3835,30	1010,01	3.797	3608,03	605,13	5.962
20	-1,80	15000	5,93	0,34	4115,45	1133,70	3.630	3864,65	712,04	5.428
21	-1,90	15000	8,28	0,39	4395,60	1264,68	3.476	4125,26	831,66	4.960
22	-2,00	15000	10,63	0,44	4675,75	1402,99	3.333	4389,87	964,71	4.550
23	-2,00	20000	-14,31	0,33	4682,30	1405,97	3.330	6874,91	967,52	7.106
24	-2,10	20000	-10,32	0,33	5055,84	1564,58	3.231	7326,54	1115,69	6.567
25	-2,20	20000	-6,58	0,33	5429,38	1730,52	3.137	7783,51	1280,06	6.081
26	-2,30	20000	-3,04	0,32	5802,91	1903,79	3.048	8245,82	1461,35	5.643
27	-2,40	20000	0,37	0,31	6176,45	2084,41	2.963	8713,47	1660,30	5.248
28	-2,50	20000	3,67	0,36	6549,99	2272,37	2.882	9186,46	1877,64	4.893
29	-2,60	20000	6,88	0,42	6923,52	2467,67	2.806	9664,81	2114,11	4.572
30	-2,70	20000	10,04	0,47	7297,06	2670,33	2.733	10148,51	2370,43	4.281
31	-2,80	20000	13,17	0,54	7670,60	2880,35	2.663	10637,56	2647,35	4.018
32	-2,90	20000	16,26	0,60	8044,13	3097,72	2.597	11131,96	2945,59	3.779

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
33	-3,00	20000	19,35	0,67	8417,67	3322,45	2.534	11631,73	3265,90	3.562
34	-3,00	25000	-5,58	0,38	8426,09	3327,15	2.533	16249,39	3272,55	4.965
35	-3,10	25000	-1,42	0,37	8893,01	3572,22	2.489	16997,66	3616,77	4.700
36	-3,20	25000	2,60	0,40	9359,93	3824,65	2.447	17752,62	3985,81	4.454
37	-3,30	25000	6,49	0,45	9826,85	4084,45	2.406	18514,29	4380,41	4.227
38	-3,40	25000	10,28	0,51	10293,77	4351,61	2.366	19282,66	4801,31	4.016
39	-3,50	25000	14,00	0,58	10760,69	4626,14	2.326	20057,73	5249,24	3.821
40	-3,60	25000	17,65	0,64	11227,61	4908,04	2.288	20839,50	5724,93	3.640
41	-3,70	25000	21,26	0,71	11694,53	5197,30	2.250	21627,99	6229,13	3.472
42	-3,80	25000	24,83	0,78	12161,45	5493,94	2.214	22423,18	6762,56	3.316
43	-3,90	25000	28,37	0,85	12628,37	5797,95	2.178	23225,07	7325,96	3.170
44	-4,00	25000	31,90	0,92	13095,29	6109,33	2.143	24033,68	7920,08	3.035
45	-4,00	30000	6,98	0,50	13105,59	6115,68	2.143	31388,02	7932,31	3.957
46	-4,10	30000	11,17	0,56	13666,45	6247,99	2.187	32357,46	8543,99	3.787
47	-4,20	30000	15,10	0,62	14227,32	6362,14	2.236	33310,56	9166,31	3.634
48	-4,30	30000	18,81	0,68	14788,19	6477,66	2.283	34261,76	9799,96	3.496
49	-4,40	30000	22,33	0,74	15349,05	6594,55	2.328	35211,37	10445,12	3.371
50	-4,50	30000	25,67	0,80	15909,92	6712,77	2.370	36159,68	11101,95	3.257
51	-4,60	30000	28,86	0,87	16470,78	6832,31	2.411	37106,92	11770,61	3.153
52	-4,70	30000	31,90	0,93	17031,65	6953,15	2.449	38053,32	12451,26	3.056
53	-4,80	30000	34,82	0,99	17592,52	7075,27	2.486	38999,07	13144,04	2.967
54	-4,90	30000	37,63	1,06	18153,38	7198,66	2.522	39944,36	13849,11	2.884
55	-5,00	30000	40,34	1,13	18714,25	7323,29	2.555	40889,34	14566,59	2.807

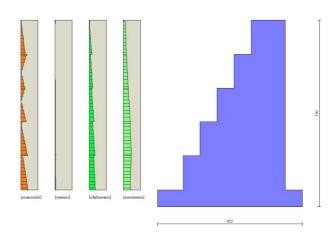


Fig. 12 - Verifiche paramento pietrame (Combinazione n° 3)

Combinazione nº 7 - EQU (A1-M1-R3)

n°	Υ	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
1	0,00	10000	0,00	0,00	0,00	0,00	100.000	0,00	0,00	100.000
2	-0,10	10000	0,00	0,02	199,80	0,00	100.000	99,90	0,00	100.000
3	-0,20	10000	0,00	0,04	399,60	0,00	100.000	199,80	0,00	100.000
4	-0,30	10000	0,00	0,06	599,40	0,00	100.000	299,70	0,00	100.000
5	-0,40	10000	0,00	0,08	799,20	0,00	100.000	399,60	0,00	100.000
6	-0,50	10000	0,01	0,10	999,00	1,65	604.717	500,10	0,05	9127.308
7	-0,60	10000	0,04	0,12	1198,80	6,63	180.688	601,81	0,44	1364.713
8	-0,70	10000	0,11	0,14	1398,60	17,18	81.410	705,55	1,57	450.781
9	-0,80	10000	0,26	0,16	1598,40	35,57	44.933	812,15	4,13	196.415
10	-0,90	10000	0,50	0,19	1798,20	61,88	29.060	921,62	8,94	103.134
11	-1,00	10000	0,84	0,21	1998,00	96,16	20.778	1034,00	16,76	61.681
12	-1,00	15000	-24,12	0,26	2003,00	96,93	20.665	2055,17	16,96	121.200
13	-1,10	15000	-20,47	0,28	2302,40	139,34	16.524	2302,87	28,68	80.296
14	-1,20	15000	-17,49	0,29	2601,80	189,78	13.709	2554,96	45,04	56.732
15	-1,30	15000	-14,93	0,31	2901,20	248,28	11.685	2811,45	66,83	42.070
16	-1,40	15000	-12,66	0,32	3200,60	314,86	10.165	3072,35	94,86	32.388
17	-1,50	15000	-10,57	0,33	3500,00	389,54	8.985	3337,67	129,94	25.685
18	-1,60	15000	-8,61	0,34	3799,40	472,32	8.044	3607,42	172,88	20.866
19	-1,70	15000	-6,72	0,35	4098,80	563,23	7.277	3881,60	224,49	17.291
20	-1,80	15000	-4,88	0,35	4398,20	662,26	6.641	4160,21	285,57	14.568
21	-1,90	15000	-3,05	0,35	4697,60	769,43	6.105	4443,27	356,95	12.448
22	-2,00	15000	-1,21	0,35	4997,00	884,74	5.648	4730,78	439,42	10.766
23	-2,00	20000	-26,16	0,45	5004,00	887,14	5.641	7399,78	441,19	16.772
24	-2,10	20000	-22,47	0,45	5403,20	1010,76	5.346	7888,97	535,83	14.723
25	-2,20	20000	-19,07	0,46	5802,40	1142,54	5.079	8384,10	643,21	13.035
26	-2,30	20000	-15,90	0,46	6201,60	1282,47	4.836	8885,16	764,15	11.627
27	-2,40	20000	-12,89	0,46	6600,80	1430,57	4.614	9392,17	899,47	10.442
28	-2,50	20000	-10,00	0,46	7000,00	1586,83	4.411	9905,12	1049,97	9.434
29	-2,60	20000	-7,21	0,45	7399,20	1751,26	4.225	10424,01	1216,47	8.569
30	-2,70	20000	-4,49	0,44	7798,40	1923,86	4.054	10948,86	1399,79	7.822
31	-2,80	20000	-1,82	0,43	8197,60	2104,63	3.895	11479,64	1600,74	7.171
32	-2,90	20000	0,82	0,44	8596,80	2293,57	3.748	12016,38	1820,15	6.602

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
33	-3,00	20000	3,43	0,50	8996,00	2490,69	3.612	12559,07	2058,81	6.100
34	-3,00	25000	-21,50	0,55	9005,00	2494,72	3.610	17526,26	2063,80	8.492
35	-3,10	25000	-17,65	0,54	9504,00	2700,18	3.520	18336,97	2322,96	7.894
36	-3,20	25000	-13,97	0,53	10003,00	2913,82	3.433	19155,11	2603,03	7.359
37	-3,30	25000	-10,43	0,53	10502,00	3135,64	3.349	19980,70	2904,83	6.878
38	-3,40	25000	-7,01	0,51	11001,00	3365,63	3.269	20813,73	3229,17	6.446
39	-3,50	25000	-3,68	0,50	11500,00	3603,81	3.191	21654,20	3576,88	6.054
40	-3,60	25000	-0,43	0,48	11999,00	3850,17	3.116	22502,12	3948,77	5.699
41	-3,70	25000	2,77	0,53	12498,00	4104,71	3.045	23357,48	4345,65	5.375
42	-3,80	25000	5,91	0,59	12997,00	4367,44	2.976	24220,30	4768,34	5.079
43	-3,90	25000	9,02	0,66	13496,00	4638,35	2.910	25090,55	5217,66	4.809
44	-4,00	25000	12,11	0,72	13995,00	4917,45	2.846	25968,26	5694,43	4.560
45	-4,00	30000	-12,82	0,59	14006,00	4923,00	2.845	33884,93	5704,27	5.940
46	-4,10	30000	-8,91	0,57	14605,40	4948,67	2.951	34811,60	6198,48	5.616
47	-4,20	30000	-5,31	0,56	15204,80	4948,67	3.073	35710,70	6692,85	5.336
48	-4,30	30000	-1,98	0,55	15804,20	4948,67	3.194	36609,80	7187,22	5.094
49	-4,40	30000	1,11	0,56	16403,60	4948,67	3.315	37508,90	7681,59	4.883
50	-4,50	30000	3,98	0,61	17003,00	4948,67	3.436	38408,00	8175,96	4.698
51	-4,60	30000	6,65	0,66	17602,40	4948,67	3.557	39307,10	8670,34	4.534
52	-4,70	30000	9,15	0,72	18201,80	4948,67	3.678	40206,20	9164,71	4.387
53	-4,80	30000	11,48	0,77	18801,20	4948,67	3.799	41105,30	9659,08	4.256
54	-4,90	30000	13,68	0,82	19400,60	4948,67	3.920	42004,40	10153,45	4.137
55	-5,00	30000	15,74	0,88	20000,00	4948,67	4.041	42903,50	10647,82	4.029

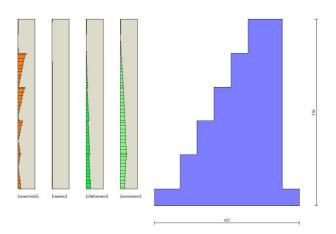


Fig. 13 - Verifiche paramento pietrame (Combinazione n° 7)

Combinazione nº 8 - EQU (A1-M1-R3) H + V

n°	Υ	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
1	0,00	10000	0,00	0,00	0,00	0,00	100.000	0,00	0,00	100.000
2	-0,10	10000	0,90	0,02	219,07	39,85	5.498	110,01	1,97	55.885
3	-0,20	10000	1,84	0,05	438,13	82,33	5.322	220,98	8,05	27.454
4	-0,30	10000	2,82	0,08	657,20	127,43	5.157	332,91	18,50	17.990
5	-0,40	10000	3,83	0,11	876,27	175,17	5.003	445,79	33,60	13.269
6	-0,50	10000	4,89	0,14	1095,34	225,53	4.857	559,63	53,59	10.443
7	-0,60	10000	5,99	0,18	1314,40	278,52	4.719	674,42	78,75	8.565
8	-0,70	10000	7,13	0,22	1533,47	336,07	4.563	790,88	109,39	7.230
9	-0,80	10000	8,34	0,26	1752,54	400,17	4.380	909,72	146,11	6.226
10	-0,90	10000	9,62	0,31	1971,60	471,85	4.178	1031,31	189,60	5.440
11	-1,00	10000	10,99	0,36	2190,67	552,20	3.967	1156,07	240,68	4.803
12	-1,00	15000	-13,95	0,23	2196,15	554,09	3.964	2286,93	241,78	9.459
13	-1,10	15000	-9,74	0,23	2524,42	662,48	3.811	2560,79	302,42	8.468
14	-1,20	15000	-6,10	0,24	2852,70	779,59	3.659	2839,41	374,30	7.586
15	-1,30	15000	-2,83	0,24	3180,97	905,47	3.513	3122,81	458,31	6.814
16	-1,40	15000	0,20	0,24	3509,24	1040,12	3.374	3411,00	555,33	6.142
17	-1,50	15000	3,07	0,29	3837,51	1183,57	3.242	3704,00	666,21	5.560
18	-1,60	15000	5,85	0,34	4165,78	1335,84	3.118	4001,81	791,86	5.054
19	-1,70	15000	8,57	0,40	4494,05	1496,94	3.002	4304,44	933,14	4.613
20	-1,80	15000	11,25	0,47	4822,32	1666,88	2.893	4611,89	1090,94	4.227
21	-1,90	15000	13,94	0,53	5150,60	1845,66	2.791	4924,18	1266,15	3.889
22	-2,00	15000	16,64	0,61	5478,87	2033,31	2.695	5241,31	1459,63	3.591
23	-2,00	20000	-8,29	0,34	5486,54	2037,35	2.693	8185,84	1463,70	5.593
24	-2,10	20000	-4,07	0,33	5924,24	2253,29	2.629	8724,68	1677,73	5.200
25	-2,20	20000	-0,08	0,32	6361,93	2478,09	2.567	9269,98	1913,75	4.844
26	-2,30	20000	3,73	0,38	6799,63	2711,78	2.507	9821,74	2172,66	4.521
27	-2,40	20000	7,41	0,44	7237,32	2954,34	2.450	10379,96	2455,32	4.228
28	-2,50	20000	11,00	0,51	7675,02	3205,79	2.394	10944,65	2762,64	3.962
29	-2,60	20000	14,50	0,58	8112,72	3466,13	2.341	11515,81	3095,49	3.720
30	-2,70	20000	17,96	0,66	8550,41	3735,35	2.289	12093,44	3454,77	3.501
31	-2,80	20000	21,39	0,74	8988,11	4013,48	2.239	12677,55	3841,36	3.300
32	-2,90	20000	24,80	0,82	9425,80	4300,50	2.192	13268,14	4256,16	3.117

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
33	-3,00	20000	28,20	0,91	9863,50	4596,42	2.146	13865,20	4700,04	2.950
34	-3,00	25000	3,28	0,43	9873,37	4602,64	2.145	19335,19	4709,24	4.106
35	-3,10	25000	7,67	0,49	10420,48	4926,88	2.115	20226,56	5184,69	3.901
36	-3,20	25000	11,92	0,56	10967,60	5260,04	2.085	21126,04	5692,94	3.711
37	-3,30	25000	16,06	0,64	11514,72	5602,09	2.055	22033,61	6234,89	3.534
38	-3,40	25000	20,11	0,72	12061,84	5953,06	2.026	22949,29	6811,42	3.369
39	-3,50	25000	24,09	0,80	12608,96	6312,93	1.997	23873,08	7423,41	3.216
40	-3,60	25000	28,02	0,88	13156,08	6681,71	1.969	24804,97	8071,77	3.073
41	-3,70	25000	31,90	0,97	13703,20	7059,40	1.941	25744,97	8757,38	2.940
42	-3,80	25000	35,76	1,06	14250,32	7446,00	1.914	26693,08	9481,13	2.815
43	-3,90	25000	39,59	1,15	14797,44	7841,52	1.887	27649,30	10243,90	2.699
44	-4,00	24477	43,41	1,25	15344,56	8245,95	1.861	28613,63	11046,59	2.590
45	-4,00	30000	18,49	0,70	15356,62	8254,23	1.860	37322,00	11063,09	3.374
46	-4,10	30000	22,92	0,78	16013,82	8485,21	1.887	38521,75	11893,35	3.239
47	-4,20	30000	27,12	0,86	16671,02	8699,24	1.916	39709,12	12744,14	3.116
48	-4,30	30000	31,12	0,94	17328,22	8916,13	1.943	40896,76	13616,32	3.004
49	-4,40	30000	34,96	1,02	17985,42	9135,85	1.969	42084,97	14510,20	2.900
50	-4,50	30000	38,64	1,10	18642,62	9358,39	1.992	43274,03	15426,11	2.805
51	-4,60	30000	42,18	1,19	19299,82	9583,72	2.014	44464,19	16364,34	2.717
52	-4,70	30000	45,61	1,27	19957,03	9811,84	2.034	45655,67	17325,20	2.635
53	-4,80	30000	48,93	1,36	20614,23	10042,70	2.053	46848,66	18308,99	2.559
54	-4,90	29355	52,15	1,45	21271,43	10276,32	2.070	48043,34	19315,99	2.487
55	-5,00	28414	55,29	1,54	21928,63	10512,65	2.086	49239,88	20346,50	2.420

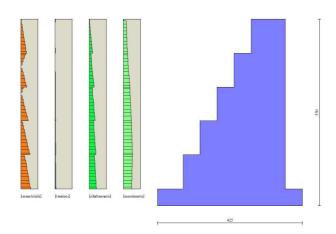


Fig. 14 - Verifiche paramento pietrame (Combinazione nº 8)

Combinazione nº 9 - EQU (A1-M1-R3) H - V

n°	Υ	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
1	0,00	10000	0,00	0,00	0,00	0,00	100.000	0,00	0,00	100.000
2	-0,10	10000	1,08	0,02	180,53	39,51	4.570	90,62	1,96	46.302
3	-0,20	10000	2,20	0,04	361,07	80,96	4.460	181,95	7,96	22.863
4	-0,30	10000	3,36	0,07	541,60	124,36	4.355	273,99	18,20	15.056
5	-0,40	10000	4,55	0,09	722,13	169,70	4.255	366,73	32,87	11.157
6	-0,50	10000	5,78	0,12	902,66	216,99	4.160	460,19	52,17	8.821
7	-0,60	10000	7,04	0,15	1083,20	266,23	4.069	554,35	76,29	7.266
8	-0,70	10000	8,35	0,19	1263,73	319,35	3.957	649,92	105,49	6.161
9	-0,80	10000	9,71	0,23	1444,26	378,32	3.818	747,63	140,29	5.329
10	-0,90	10000	11,16	0,27	1624,80	444,20	3.658	847,85	181,31	4.676
11	-1,00	10000	12,70	0,32	1805,33	518,07	3.485	950,97	229,31	4.147
12	-1,00	15000	-12,24	0,18	1809,85	519,82	3.482	1882,06	230,35	8.171
13	-1,10	15000	-7,91	0,18	2080,38	621,03	3.350	2108,69	287,21	7.342
14	-1,20	15000	-4,14	0,18	2350,90	730,29	3.219	2339,71	354,57	6.599
15	-1,30	15000	-0,71	0,18	2621,43	847,63	3.093	2575,14	433,24	5.944
16	-1,40	15000	2,50	0,21	2891,96	973,06	2.972	2815,00	524,03	5.372
17	-1,50	15000	5,56	0,26	3162,49	1106,61	2.858	3059,28	627,73	4.874
18	-1,60	15000	8,55	0,31	3433,02	1248,30	2.750	3308,01	745,18	4.439
19	-1,70	15000	11,49	0,36	3703,55	1398,13	2.649	3561,18	877,17	4.060
20	-1,80	15000	14,41	0,42	3974,08	1556,13	2.554	3818,81	1024,52	3.727
21	-1,90	15000	17,35	0,48	4244,60	1722,29	2.465	4080,90	1188,04	3.435
22	-2,00	15000	20,30	0,55	4515,13	1896,63	2.381	4347,45	1368,56	3.177
23	-2,00	20000	-4,62	0,26	4521,46	1900,40	2.379	6783,55	1372,35	4.943
24	-2,10	20000	-0,19	0,25	4882,16	2102,33	2.322	7235,21	1572,02	4.602
25	-2,20	20000	4,02	0,29	5242,87	2312,45	2.267	7692,82	1792,25	4.292
26	-2,30	20000	8,08	0,35	5603,57	2530,77	2.214	8156,41	2033,86	4.010
27	-2,40	20000	12,01	0,41	5964,28	2757,29	2.163	8625,96	2297,67	3.754
28	-2,50	20000	15,86	0,47	6324,98	2992,01	2.114	9101,48	2584,49	3.522
29	-2,60	20000	19,65	0,53	6685,68	3234,94	2.067	9582,98	2895,14	3.310
30	-2,70	20000	23,41	0,60	7046,39	3486,08	2.021	10070,45	3230,45	3.117
31	-2,80	20000	27,14	0,67	7407,09	3745,43	1.978	10563,90	3591,24	2.942
32	-2,90	20000	30,86	0,75	7767,80	4013,00	1.936	11063,34	3978,32	2.781

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
33	-3,00	19624	34,59	0,83	8128,50	4288,78	1.895	11568,75	4392,51	2.634
34	-3,00	25000	9,67	0,40	8136,63	4294,59	1.895	16112,53	4401,09	3.661
35	-3,10	25000	14,33	0,46	8587,52	4598,01	1.868	16864,65	4844,76	3.481
36	-3,20	25000	18,86	0,53	9038,40	4909,65	1.841	17624,25	5319,12	3.313
37	-3,30	25000	23,30	0,59	9489,28	5229,51	1.815	18391,33	5825,00	3.157
38	-3,40	25000	27,65	0,66	9940,16	5557,60	1.789	19165,90	6363,21	3.012
39	-3,50	25000	31,95	0,73	10391,04	5893,92	1.763	19947,96	6934,57	2.877
40	-3,60	25000	36,21	0,81	10841,92	6238,47	1.738	20737,50	7539,91	2.750
41	-3,70	25000	40,43	0,89	11292,80	6591,24	1.713	21534,53	8180,04	2.633
42	-3,80	24110	44,63	0,97	11743,68	6952,24	1.689	22339,04	8855,80	2.523
43	-3,90	22853	48,82	1,07	12194,56	7321,48	1.666	23151,05	9567,99	2.420
44	-4,00	21597	53,01	1,17	12645,44	7698,94	1.642	23970,55	10317,44	2.323
45	-4,00	30000	28,10	0,66	12655,38	7706,68	1.642	31225,76	10332,85	3.022
46	-4,10	30000	32,81	0,73	13196,98	7911,07	1.668	32214,15	11107,08	2.900
47	-4,20	30000	37,28	0,80	13738,58	8097,97	1.697	33188,42	11899,16	2.789
48	-4,30	30000	41,55	0,87	14280,18	8287,07	1.723	34162,00	12709,89	2.688
49	-4,40	30000	45,63	0,94	14821,78	8478,36	1.748	35135,20	13539,52	2.595
50	-4,50	30000	49,54	1,02	15363,38	8671,81	1.772	36108,29	14388,29	2.510
51	-4,60	29006	53,31	1,10	15904,98	8867,40	1.794	37081,52	15256,45	2.431
52	-4,70	27913	56,96	1,18	16446,57	9065,11	1.814	38055,12	16144,24	2.357
53	-4,80	26855	60,48	1,27	16988,17	9264,93	1.834	39029,28	17051,88	2.289
54	-4,90	25828	63,91	1,36	17529,77	9466,83	1.852	40004,17	17979,61	2.225
55	-5,00	24829	67,24	1,46	18071,37	9670,82	1.869	40979,96	18927,64	2.165

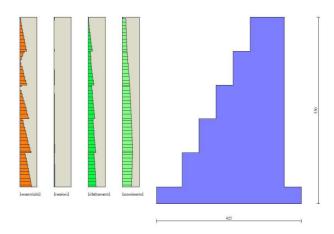


Fig. 15 - Verifiche paramento pietrame (Combinazione n° 9)

Risultati per inviluppo

Spinta e forze

Simbologia adottata

Indice della combinazione

Ic A I V Cx, Cy Px, Py Tipo azione Inclinazione della spinta, espressa in [°]

Valore dell'azione, espressa in [kg]
Componente in direzione X ed Y dell'azione, espressa in [kg]
Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	CY	Px	PY
		[kg]	[°]	[kg]	[kg]	[m]	[m]
2	Spinta statica	3969	20,03	3729	1360	0,50	-2,86
	Incremento di spinta sismica		2264	2127	776	0,50	-3,63
	Peso/Inerzia muro			3255	25313/1627	-1,23	-3,47
	Peso/Inerzia terrapieno			631	4908/316	0,25	-2,47

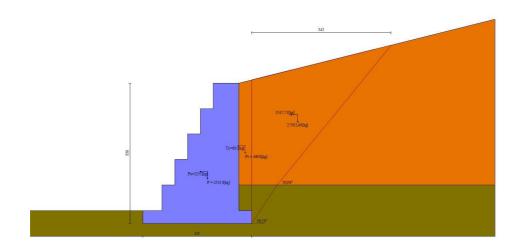


Fig. 16 - Cuneo di spinta (combinazione sismica) (Combinazione n° 2)

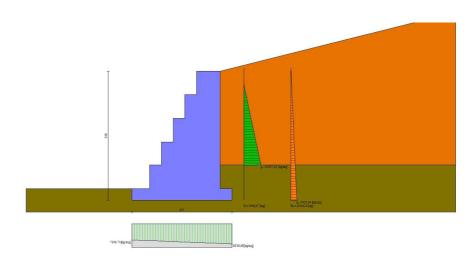


Fig. 17 - Diagramma delle pressioni (combinazione sismica) (Combinazione nº 2)

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb Indice/Tipo combinazione

Sisma (H: componente orizzontale, V: componente verticale) Coeff. di sicurezza allo scorrimento

FSsco **FS**RIB Coeff. di sicurezza al ribaltamento **FS**OLIM Coeff, di sicurezza a carico limite FSSTAB Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento **FS**HYD

Cmb	Sismica	FS sco	FSRIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		4.955		53.409			
2 - STR (A1-M1-R3)	H + V	2.808		44.157			
3 - STR (A1-M1-R3)	H - V	2.794		51.061			
4 - GEO (A2-M2-R2)					2.937		
5 - GEO (A2-M2-R2)	H + V				2.896		
6 - GEO (A2-M2-R2)	H - V				2.981		
7 - EQU (A1-M1-R3)			6.410				
8 - EQU (A1-M1-R3)	H + V		3.515				
9 - EQU (A1-M1-R3)	H - V		2.622				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Rsa Resistenza allo scorrimento per attrito, espresso in [kg] Resistenza passiva terreno antistante, espresso in [kg] Rpt

Rps Rp Rt Resistenza passiva sperone, espresso in [kg] Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kg] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kg] R T FS Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kg] Carico parallelo al piano di posa, espresso in [kg]

Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	
3 - STR (A1-M1-R3) H - V	25339	0	0			25339	9070	2.794

Verifica a carico limite

Simbologia adottata

n° N Indice combinazione

Carico normale totale al piano di posa, espresso in [kg]

Qu Qd FS carico limite del terreno, espresso in [kg]

Portanza di progetto, espresso in [kg] Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kg]	[kg]	[kg]	
2 - STR (A1-M1-R3) H + V	34298	1514503	1262086	44.157

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Nc, Nq, Nγ Fattori di capacità portante Fattori di inclinazione del carico ic, iq, iγ Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico dc, dq, dγ gc, gq, gγ bc, bq, bγ Fattori di inclinazione del piano di posa Fattori di forma della fondazione

sc, sq, sγ pc, pq, pγ Fattori di riduzione per punzonamento secondo Vesic

Fattore di riduzione capacità portante per eccentricità secondo Meyerhof

Ir, Irc Indici di rigidezza per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByNy viene moltiplicato per rγ

questo fattore D

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m] В' Н Peso di volume del terreno medio, espresso in [kg/mc] γ Angolo di attrito del terreno medio, espresso in [°] Coesione del terreno medio, espresso in [kg/cmq] Pressione terreno valle, espressa in [kg/cmq]

om Pressione terreno monte, espressa in [kg/cmq]
Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq gy	bc bq bγ	sc sq sγ	pc pq pγ	Ir	Irc	Re	Γγ
2	67.867	0.679	1.049							0.866	0.918
	55.957	0.679	1.025								
	77.333	0.352	1.025								

n°	D	B'	н	γ	ф	С
	[m]	[m]	[m]	[kg/mc]	[°]	[kg/cmq]
2	0.50	4,25	4,46	2300	39.00	0.50

n°	σv	Œm
	[kg/cmq]	[kg/cmq]
2	0,72	0,89

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

n° Ms Mr Momento stabilizzante, espresso in [kgm] Momento ribaltante, espresso in [kgm]

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS
	[kgm]	[kgm]	
9 - EOU (A1-M1-R3) H - V	93260	35569	2.622

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione
Centro superficie di scorrimento, espresso in [m]

Ic C R FS Raggio, espresso in [m] Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
5 - GEO (A2-M2-R2) H + V	-1,50; 4,50	10,26	2.896

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) peso della striscia espresso in [kg]

Qy Qf carico sulla striscia espresso in [kg] carico acqua sulla striscia espresso in [kg]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [kg/cmq]

α φ c b

u Tx; Ty

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq] Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kg/cmq]

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kg]	[kg]	[kg]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kg]
1	778	0	0	8,49 - 0,56	71.417	30.000	0,04	0,000	
2	2055	0	0	0,56	63.405	30.000	0,04	0,000	
3	2924	0	0	0,56	57.081	30.000	0,04	0,000	
4	3584	0	0	0,56	51.720	30.000	0,04	0,000	
5	4109	0	0	0,56	46.942	30.000	0,04	0,000	
6	4534	0	0	0,56	42.562	30.000	0,04	0,000	
7	4880	0	0	0,56	38.473	30.000	0,04	0,000	
8	5167	0	0	0,56	34.606	30.000	0,04	0,000	
9	5461	0	0	0,56	30.912	39.000	0,50	0,000	
10	5715	0	0	0,56	27.356	39.000	0,50	0,000	
11	5913	0	0	0,56	23.912	39.000	0,50	0,000	
12	6061	0	0	0,56	20.557	39.000	0,50	0,000	
13	6162	0	0	0,56	17.275	39.000	0,50	0,000	
14	6218	0	0	0,56	14.050	39.000	0,50	0,000	
15	6267	0	0	0,56	10.871	39.000	0,50	0,000	
16	6279	0	0	0,56	7.725	39.000	0,50	0,000	
17	6397	0	0	0,56	4.602	39.000	0,50	0,000	
18	5393	0	0	0,56	1.494	39.000	0,50	0,000	
19	4080	0	0	0,56	-1.611	39.000	0,50	0,000	
20	2818	0	0	0,56	-4.720	39.000	0,50	0,000	
21	1517	0	0	0,56	-7.843	39.000	0,50	0,000	
22	781	0	0	0,56	-10.990	39.000	0,50	0,000	
23	569	0	0	0,56	-14.171	39.000	0,50	0,000	
24	366	0	0	0,56	-17.398	39.000	0,50	0,000	
25	121	0	0	-5,40 - 0,56	-19.762	39.000	0,50	0,000	

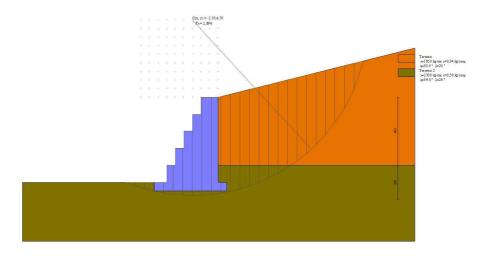


Fig. 18 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 5)

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Indice della sezione
Posizione della sezione, espresso in [m]

n° X N T M

N Sforzo normale, espresso in [ni]
N Sforzo normale, espresso in [kg]. Positivo se di compressione.
T Taglio, espresso in [kg]. Positivo se di retto da monte verso valle
M Momento, espresso in [kgm]. Positivo se tende le fibre contro terra (a monte)
La posizione delle sezioni di verifica fanno riferimento al sistema di riferimento globale la cui origine è nello spigolo in alto a destra del paramento.

Paramento

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	Mmax
	[m]	[kq]	[kq]	[kq]	[kq]	[kgm]	[kgm]
1	0,00	0	0	0	0	0	0
2	-0,10	187	213	0	26	0	1
3	-0,20	374	425	0	55	0	5
4	-0,30	561	638	0	84	0	12
5	-0,40	748	851	0	115	0	22
6	-0,50	935	1063	2	148	0	35
7	-0,60	1122	1276	7	183	0	52
8	-0,70	1309	1489	17	221	2	72
9	-0,80	1496	1701	36	264	4	96
10	-0,90	1683	1914	62	314	9	125
11	-1,00	1870	2126	96	372	17	159
12	-1,00	1874	2132	97	373	-483	-316
13	-1,10	2154	2450	139	451	-471	-278
14	-1,20	2435	2769	190	537	-455	-232
15	-1,30	2715	3088	248	631	-433	-178
16	-1,40	2995	3406	315	732	-405	-114
17	-1,50	3275	3725	390	841	-370	-41
18	-1,60	3555	4044	472	958	-327	42
19	-1,70	3835	4362	563	1083	-276	137
20	-1,80	4115	4681	662	1215	-214	244
21	-1,90	4396	5000	769	1356	-143	364
22	-2,00	4676	5318	885	1504	-61	500
23	-2,00	4682	5326	887	1507	-1309	-670
24	-2,10	5056	5751	1011	1676	-1214	-522
25	-2,20	5429	6175	1143	1853	-1107	-357
26	-2,30	5803	6600	1282	2037	-986	-176
27	-2,40	6176	7025	1431	2230	-851	23
28	-2,50	6550	7450	1587	2430	-700	240
29	-2,60	6924	7875	1751	2638	-534	477
30	-2,70	7297	8300	1924	2854	-350	733
31	-2,80	7671	8725	2105	3078	-149	1010
32	-2,90	8044	9149	2294	3310	70	1308
33	-3,00	8418	9574	2491	3550	309	1630
34	-3,00	8426	9584	2495	3555	-1936	-470
35	-3,10	8893	10115	2700	3815	-1677	-126
36	-3,20	9360	10646	2914	4083	-1397	243
37	-3,30	9827	11177	3136	4359	-1095	638
38	-3,40	10294	11708	3366	4644	-771	1058
39	-3,50	10761	12239	3604	4935	-423	1506
40	-3,60	11228	12770	3850	5235	-51	1982
41	-3,70	11695	13301	4105	5543	346	2486
42	-3,80	12161	13833	4367	5858	768	3020
43	-3,90	12628	14364	4638	6182	1218	3583
44	-4,00	13095	14895	4917	6513	1694	4201

n°	Х	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kg]	[kg]	[kg]	[kg]	[kgm]	[kgm]
45	-4,00	13106	14906	4923	6520	-1796	914
46	-4,10	13666	15544	4949	6672	-1302	1526
47	-4,20	14227	16182	4949	6806	-807	2148
48	-4,30	14788	16820	4949	6942	-313	2782
49	-4,40	15349	17458	4949	7080	182	3427
50	-4,50	15910	18096	4949	7220	676	4084
51	-4,60	16471	18734	4949	7361	1170	4753
52	-4,70	17032	19372	4949	7504	1665	5433
53	-4,80	17593	20010	4949	7649	2159	6126
54	-4,90	18153	20648	4949	7796	2653	6853
55	-5,00	18714	21286	4949	7945	3148	7632

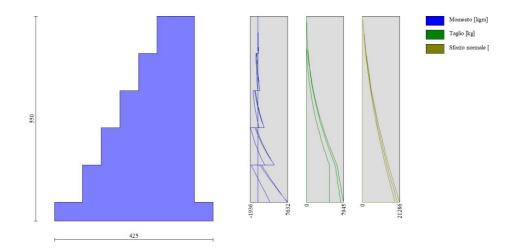


Fig. 19 - Paramento

Fondazione

n°	X	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kg]	[kg]	[kg]	[kg]	[kgm]	[kgm]
1	-3,75	0	0	0	0	0	0
2	-3,66	0	0	319	560	15	26
3	-3,56	0	0	650	1123	60	105
4	-3,47	0	0	993	1690	137	237
5	-3,38	0	0	1349	2260	247	422
6	-3,28	0	0	1717	2834	390	661
7	-3,19	0	0	2097	3412	569	954
8	-3,09	0	0	2490	3993	784	1301
9	-3,00	0	0	2895	4578	1036	1702
10	0,00	0	0	-1906	-1114	-469	-279
11	0,10	0	0	-1509	-892	-300	-179
12	0,20	0	0	-1121	-670	-169	-101
13	0,30	0	0	-751	-447	-75	-45
14	0,40	0	0	-377	-224	-19	-11
15	0,50	0	0	0	0	0	0

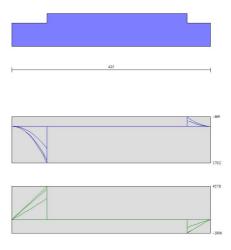


Fig. 20 - Fondazione

Verifiche strutturali

Paramento in pietrame

Simbologia adottata n° indice sezione Y ordinata sezior ordinata sezione espressa in [m]

ordinata sezione espressa in [m] area sezione reagente espresso in [cmq] eccentricità espresso in [cm] tensione espressa in [kg/cmq] resistenza ai carichi orizzontali espressa in [kg] Azione orizzontale espressa in [kg] fattore di sicurezza allo scorrimento (Rt/Et) momento stabilizzante espresso in [kgm] momento ribaltante espresso in [kgm] fattore di sicurezza a ribaltamento (Ms/Mr) As
e
σ
Rt
Et
FSsco
Ms
Mr
FSrib

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmg]	[kg]	[kg]		[kgm]	[kgm]	
1	0,00	10000	0,00	0,00	0,00	0,00	100.000	0,00	0,00	100.000
2	-0,10	10000	1,08	0,02	180,53	39,51	4.570	90,62	1,96	46.302
3	-0,20	10000	2,20	0,04	361,07	80,96	4.460	181,95	7,96	22.863
4	-0,30	10000	3,36	0,06	541,60	124,36	4.355	273,99	18,20	15.056
5	-0,40	10000	4,55	0,08	722,13	169,70	4.255	366,73	32,87	11.157
6	-0,50	10000	5,78	0,10	902,66	216,99	4.160	460,19	52,17	8.821
7	-0,60	10000	7,04	0,12	1083,20	266,23	4.069	554,35	76,29	7.266
8	-0,70	10000	8,35	0,14	1263,73	319,35	3.957	649,92	105,49	6.161
9	-0,80	10000	9,71	0,16	1444,26	378,32	3.818	747,63	140,29	5.329
10	-0,90	10000	11,16	0,19	1624,80	444,20	3.658	847,85	181,31	4.676
11	-1,00	10000	12,70	0,21	1805,33	518,07	3.485	950,97	229,31	4.147
12	-1,00	15000	-24,12	0,26	1809,85	519,82	3.482	1882,06	230,35	8.171
13	-1,10	15000	-20,47	0,28	2080,38	621,03	3.350	2108,69	287,21	7.342
14	-1,20	15000	-17,49	0,29	2350,90	730,29	3.219	2339,71	354,57	6.599
15	-1,30	15000	-14,93	0,31	2621,43	847,63	3.093	2575,14	433,24	5.944
16	-1,40	15000	-12,66	0,32	2891,96	973,06	2.972	2815,00	524,03	5.372
17	-1,50	15000	-10,57	0,33	3162,49	1106,61	2.858	3059,28	627,73	4.874
18	-1,60	15000	-8,61	0,34	3433,02	1248,30	2.750	3308,01	745,18	4.439
19	-1,70	15000	11,49	0,35	3703,55	1398,13	2.649	3561,18	877,17	4.060
20	-1,80	15000	14,41	0,35	3974,08	1556,13	2.554	3818,81	1024,52	3.727
21	-1,90	15000	17,35	0,35	4244,60	1722,29	2.465	4080,90	1188,04	3.435
22	-2,00	15000	20,30	0,35	4515,13	1896,63	2.381	4347,45	1368,56	3.177
23	-2,00	20000	-26,16	0,45	4521,46	1900,40	2.379	6783,55	1372,35	4.943
24	-2,10	20000	-22,47	0,45	4882,16	2102,33	2.322	7235,21	1572,02	4.602
25	-2,20	20000	-19,07	0,46	5242,87	2312,45	2.267	7692,82	1792,25	4.292
26	-2,30	20000	-15,90	0,46	5603,57	2530,77	2.214	8156,41	2033,86	4.010
27	-2,40	20000	-12,89	0,46	5964,28	2757,29	2.163	8625,96	2297,67	3.754
28	-2,50	20000	15,86	0,46	6324,98	2992,01	2.114	9101,48	2584,49	3.522
29	-2,60	20000	19,65	0,45	6685,68	3234,94	2.067	9582,98	2895,14	3.310
30	-2,70	20000	23,41	0,44	7046,39	3486,08	2.021	10070,45	3230,45	3.117
31	-2,80	20000	27,14	0,43	7407,09	3745,43	1.978	10563,90	3591,24	2.942
32	-2,90	20000	30,86	0,44	7767,80	4013,00	1.936	11063,34	3978,32	2.781
33	-3,00	20000	34,59	0,50	8128,50	4288,78	1.895	11568,75	4392,51	2.634
34	-3,00	25000	-21,50	0,55	8136,63	4294,59	1.895	16112,53	4401,09	3.661
35	-3,10	25000	-17,65	0,54	8587,52	4598,01	1.868	16864,65	4844,76	3.481
36	-3,20	25000	18,86	0,53	9038,40	4909,65	1.841	17624,25	5319,12	3.313
37	-3,30	25000	23,30	0,53	9489,28	5229,51	1.815	18391,33	5825,00	3.157
38	-3,40	25000	27,65	0,51	9940,16	5557,60	1.789	19165,90	6363,21	3.012
39	-3,50	25000	31,95	0,50	10391,04	5893,92	1.763	19947,96	6934,57	2.877
40	-3,60	25000	36,21	0,48	10841,92	6238,47	1.738	20737,50	7539,91	2.750
41	-3,70	25000	40,43	0,53	11292,80	6591,24	1.713	21534,53	8180,04	2.633

n°	Y	As	е	σ	Rt	Et	FSsco	Ms	Mr	FSrib
	[m]	[cmq]	[cm]	[kg/cmq]	[kg]	[kg]		[kgm]	[kgm]	
42	-3,80	25000	44,63	0,59	11743,68	6952,24	1.689	22339,04	8855,80	2.523
43	-3,90	25000	48,82	0,66	12194,56	7321,48	1.666	23151,05	9567,99	2.420
44	-4,00	25000	53,01	0,72	12645,44	7698,94	1.642	23970,55	10317,44	2.323
45	-4,00	30000	28,10	0,59	12655,38	7706,68	1.642	31225,76	10332,85	3.022
46	-4,10	30000	32,81	0,57	13196,98	7911,07	1.668	32214,15	11107,08	2.900
47	-4,20	30000	37,28	0,56	13738,58	8097,97	1.697	33188,42	11899,16	2.789
48	-4,30	30000	41,55	0,55	14280,18	8287,07	1.723	34162,00	12709,89	2.688
49	-4,40	30000	45,63	0,56	14821,78	8478,36	1.748	35135,20	13539,52	2.595
50	-4,50	30000	49,54	0,61	15363,38	8671,81	1.772	36108,29	14388,29	2.510
51	-4,60	30000	53,31	0,66	15904,98	8867,40	1.794	37081,52	15256,45	2.431
52	-4,70	30000	56,96	0,72	16446,57	9065,11	1.814	38055,12	16144,24	2.357
53	-4,80	30000	60,48	0,77	16988,17	9264,93	1.834	39029,28	17051,88	2.289
54	-4,90	30000	63,91	0,82	17529,77	9466,83	1.852	40004,17	17979,61	2.225
55	-5,00	30000	67,24	0,88	18071,37	9670,82	1.869	40979,96	18927,64	2.165

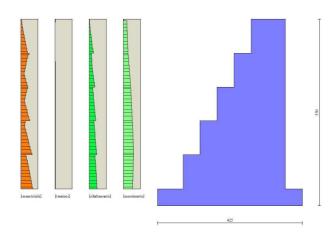


Fig. 21 - Verifiche paramento pietrame (Inviluppo)

Dichiarazioni secondo N.T.C. 2018 (punto 10.2)

Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto seque.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/01/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Origine e caratteristiche dei codici di calcolo

Titolo MAX - Analisi e Calcolo Muri di Sostegno

Versione 16.20 B

Produttore Aztec Informatica srl, Casali del Manco - loc. Casole Bruzio (CS)

Utente PROTEO INGEGNERIA SRL

Licenza AIC0048T7

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

Luogo e data

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

Il progettista
Il progettista ()

Indice

Normative di riferimento	2
Richiami teorici	3
Calcolo della spinta sul muro	3
Valori caratteristici e valori di calcolo	3
Metodo di Culmann	3
Spinta in presenza di falda	3
Spinta in presenza di sisma	3
Verifica a ribaltamento	4
Verifica a scorrimento	4
Verifica al carico limite	5
Verifica alla stabilità globale	6
Dati	7
Materiali	7
Calcestruzzo armato	7
Acciai	7
Pietrame	Errore. Il segnalibro non è definito
Geometria profilo terreno a monte del muro	7
Geometria muro	7
Geometria paramento e fondazione	7
Geometria gradoni	8
Descrizione terreni	8
Stratigrafia	8
Normativa	g
Descrizione combinazioni di carico	10
Dati sismici	11
Opzioni di calcolo	12
Risultati per combinazione	13
Spinta e forze	13
Verifiche geotecniche	14
Quadro riassuntivo coeff. di sicurezza calcolati	14
Verifica a scorrimento fondazione	15
Verifica a carico limite	15
Dettagli calcolo portanza	15
Verifica a ribaltamento	15
Verifica stabilità globale muro + terreno	16
Dettagli strisce verifiche stabilità	16
Sollecitazioni	17
Paramento	18
Fondazione Verifiche strutturali	20
	21 21
Paramento in pietrame	28
Risultati per inviluppo Spinta e forze	28
•	28
Verifiche geotecniche Quadro riassuntivo coeff. di sicurezza calcolati	28
Verifica a scorrimento fondazione	29
	29
Verifica a carico limite	28

Dettagli calcolo portanza	29
Verifica a ribaltamento	30
Verifica stabilità globale muro + terreno	30
Dettagli strisce verifiche stabilità	30
Sollecitazioni	31
Paramento	31
Fondazione	32
Verifiche strutturali	33
Paramento in pietrame	33
Dichiarazioni secondo N.T.C. 2018 (nunto 10.2)	35